Skip to main content

Electrical Properties of PU/CdS Nanocomposites

  • Conference paper
  • First Online:
Recent Advances in Metrology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 906))

  • 326 Accesses

Abstract

Polyurethane/CdS nanocomposite films were prepared by a solution mixing method. The surface morphological and electrical properties of PU/CdS nanocomposite films were investigated by characterization techniques such as scanning electron microscopy (SEM) and thermally stimulated discharge current (TSDC). The SEM images show the dispersion of CdS nanoparticles in PU matrix. In order to observe the effect of nanofillers in electret state, charge relaxation, and charge storage properties of nanocomposites, TSDC is employed to understand the mechanism of charge storage. TSDC data are an evidence of different types of relaxation process. The activation energy, released charge, and charge carrier mobility decrease while relaxation time and peak current increase with CdS nanoparticles concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan C, Jude OI (1999) Chem Mater 11:1218

    Article  Google Scholar 

  2. Wang YT, Chang TC, Hong YS, Chen HB (2003) Thermochim Acta 397:219

    Article  Google Scholar 

  3. Ogoshi T, Itoh H, Kim KM, Chujo Y (2002) Macromolecules 35:334

    Article  Google Scholar 

  4. Shang XY, Zhu ZK, Yin J, Ma XD (2002) Chem Mater 14:71

    Article  Google Scholar 

  5. Matˇejka L, Duek K, Pleštil J, Kríz J, Lednický F (1999) Polymer 40:171

    Article  Google Scholar 

  6. Huang ZH, Qiu KY (1997) Polymer 38:521

    Article  Google Scholar 

  7. Yu YY, Chen CY, Chen WC (2003) Polymer 44:593

    Article  Google Scholar 

  8. Zhou SX, Wu LM, Sun J, Shen WD (2002) Prog Org Coat 45:33

    Article  Google Scholar 

  9. Yu YY, Chen WC (2003) Mater Chem Phys 82:388

    Article  Google Scholar 

  10. Pu ZC, Mark JE (1997) Chem Mater 9:2442

    Article  Google Scholar 

  11. Chen Y, Iroh JO (1999) Chem Mater 11:1218

    Article  Google Scholar 

  12. Chan CK, Peng SL, Chu IM, Ni SC (2001) Polymer 42:4189

    Article  Google Scholar 

  13. Hsiue GH, Kuo WJ, Huang YP, Jeng RJ (2000) Polymer 41:2813

    Article  Google Scholar 

  14. Gao Y, Choudhury NR, Dutta N, Matisons J, Reading M, Delmotte L (2001) Chem Mater 13:3644

    Article  Google Scholar 

  15. Xiong MN, You B, Zhou SX, Wu LM (2004) Polymer 45:2967

    Article  Google Scholar 

  16. Mascia L, Kioul A (1995) Polymer 36:3649

    Article  Google Scholar 

  17. Chen XC, You B, Zhou SX, Wu LM (2003) Surf Interface Anal 3:369

    Article  Google Scholar 

  18. Zelner NF, Minti H, Reisfeld R (1997) Chem Mater 9:2541

    Article  Google Scholar 

  19. Pissis P, Apekis L, Christodoulides C, Niaounakis M, Kyritsis A, Nedbal J (1996) J Polym Sci B 34:1529

    Article  Google Scholar 

  20. Georgoussis G, Kyritsis A, Bershtein VA, Fainleib AM, Pissis P (2000) J Polym Sci B 38:3070

    Article  Google Scholar 

  21. Vanderschueren J, Gasiot J, Braunlich P (1980) Applied physics, Berlin, Springer vol 37, p 205

    Google Scholar 

  22. Bucci C, Fieschi R (1996) Phys. Rev 2:148, 816 (1966), 148

    Google Scholar 

  23. Garg M, Quamara JK (2006) Nucl Instrum Meth Phys Res B 246:355

    Article  Google Scholar 

  24. Van Turnhout J (1975) Thermally stimulated discharge current of polymer electrets. Elsevier, Amsterdam

    Google Scholar 

  25. Van Roggen A (1965) Ann Rep Comf Elect Insulation Not Res Council Public 3:1356

    Google Scholar 

  26. Shukla P, Gaur MS (2008) Iran Polym J 17:745

    Google Scholar 

  27. Neagu E (1994) Mater Lett 21:119

    Article  Google Scholar 

  28. Jones JF (2003) Appl Environ Microbiol 69:6515

    Article  Google Scholar 

  29. Okumoto S (2005) FRET nanosensors. PNAS 102 :8740

    Google Scholar 

  30. Benkekaa N (2004) Thermochim Acta 413:39

    Article  Google Scholar 

  31. Garg M, Quamara JK (2005) Nucl Instrum Meth Phys Res B 355:246

    Google Scholar 

  32. Correia NT, Ramos JM (1999) J Polym Sci 37:227

    Article  Google Scholar 

  33. Khare PK, Sahu DK, Verma A, Srivastava RK (2004) Indian J Pure Appl Phys 42:693

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Pal Indolia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Indolia, A.P., Chaudhary, M., Gaur, M.S., Singh, S. (2023). Electrical Properties of PU/CdS Nanocomposites. In: Yadav, S., Chaudhary, K., Gahlot, A., Arya, Y., Dahiya, A., Garg, N. (eds) Recent Advances in Metrology . Lecture Notes in Electrical Engineering, vol 906. Springer, Singapore. https://doi.org/10.1007/978-981-19-2468-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2468-2_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2467-5

  • Online ISBN: 978-981-19-2468-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics