Skip to main content

Accuracy Analysis and Verification of Ground-Based Radar Differential Interferometry

  • Conference paper
  • First Online:
3D Imaging—Multidimensional Signal Processing and Deep Learning

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 298))

  • 277 Accesses

Abstract

Ground-based interferometry radar system (GBRI) has progressively become an important means of deformation monitoring in recent years due to its all-weather suitability and high accuracy. Studies on deformation monitoring accuracy have rarely based on signal analysis in the past; hence, detailed radar parameter setting rules need further discussion. This work establishes a theoretical link between the parameters of the front-end radar system and the accuracy index of the topographic surveyor's measurements in practical application. The interferometric phase error plays a decisive role in the final deformation measurement accuracy of the system. From the perspective of signal modeling, a general theoretical equation for performance analysis is given. The equation shows the quantitative relationship between part of the design parameters of radar system and deformation monitoring accuracy. The displacement estimation variance Cramer Rao lower bound (CRLB) is derived and tested by simulation. The applicability of this derivation was demonstrated in a displacement measured approach carried out with echo signals of the corner reflector obtained by a ground-based real aperture radar sensor during a fast continuous observation. The results show that the ground-based radar system can achieve sub-millimeter deformation measurement accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pieraccini, M., Casagli, N., Luzi, G., Tarchi, D., Mecatti, D., Noferini, L., Atzeni, C.: Landslide monitoring by ground based radar interferometry: a field test in Valdarno (Italy). Int. J. Remote Sens. 24(6), 1385–1391 (2003)

    Article  Google Scholar 

  2. Leva, D., Nico, G., Tarchi, D., Fortuny Guasch, J., Sieber, A.J.: Temporal analysis of a landslide by means of a ground based SAR interferometer. IEEE Trans. Geosci. Remote Sens. 41(4), 745–752 (2003)

    Article  Google Scholar 

  3. Yang, H.L., Peng, J.H., Cui, H.Y.: Slope of large scale open pit mine monitoring deformations by using ground based interferometry. Prog. Geophys. 27(4), 1804–1811 (2012)

    Google Scholar 

  4. Werner, C., Strozzi, T., Wiesmann, A., Wegmuller, U.: A real aperture radar for ground based differential interferometry. In: IGARSS 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, vol.3 , pp. III 210–III 213 (2008)

    Google Scholar 

  5. Liu, X.M., Huang, Q.H., Tian, L.Y.: The IBIS L system and its application in dam deformation monitoring. Geomat. Spat. Inf. Technol 7, 34–36 (2015)

    Google Scholar 

  6. Monserrat, O., Crosetto, M., Luzi, G.: A review of ground based SAR interferometry for deformation measurement. ISPRS J. Photogramm. Remote. Sens. 93, 40–48 (2014)

    Article  Google Scholar 

  7. Hu, J., Guo, J., Xu, Y., Zhou, L., Zhang, S., Fan, K.: Differential ground based radar interferometry for slope and civil structures monitoring: two case studies of landslide and bridge. Remote Sens. 11(24), 2887 (2019)

    Article  Google Scholar 

  8. Tarchi, D., Casagli, N., Fanti, R., et al.: Landslide monitoring by using ground based SAR interferometry: An example of application to the Tessinalide in Italy. Eng. Geol. 68(1 2), 15–30 (2003)

    Google Scholar 

  9. Hakobyan, A., McGuire, P., Power, D., Puestow, T., Moloney, C., Luzi, G., Guccione, P.: Applications and validation tests of ground based coherent radar for deformation and vibration measurements in Canada’s Atlantic region, In: 2015 IEEE 28th CCECE, Halifax, NS, Canada, pp. 638–642. IEEE (2015)

    Google Scholar 

  10. Werner, C., Strozzi, T., Wiesmann, A., Wegmuller, U.: A ground based real aperture radar instrument for differential interferometry. In: 2009 IEEE Radar Conference, Pasadena, CA, USA, pp. 1–4. IEEE (2009)

    Google Scholar 

  11. University of Queensland: Slope Stability Radar Goes Commercial, Brisbane, Queensland, Australia. Available: http://www.uq.edu.au/news/index.phtml?article=3279. (2002)

  12. Long, S., Tong, A., Yuan, Y., Li, Z., Wu, W., Zhu, C.: New approaches to processing ground based SAR (GBSAR) data for deformation monitoring. Remote Sens. 10(12), 1936 (2018)

    Article  Google Scholar 

  13. Woods, G.S., Maskell, D.L., Mahoney, M.V.: A high accuracy microwave ranging system for industrial applications. IEEE Trans. Instrum. Measure. 42(4), 812–816 (1993)

    Google Scholar 

  14. Qi, G.Q.: High accuracy range estimation of fmcw level radar based on the phase of the zero padded FFT, Guoqing, Q. (2004, August). High accuracy range estimation of FMCW level radar based on the phase of the zero padded FFT. In: Proceedings 7th International Conference on Signal Processing, 2004. Proceedings. ICSP’04, vol. 3, pp. 2078–2081(2004)

    Google Scholar 

  15. Ayhan, S., Pauli, M., Kayser, T., Scherr, S., Zwick, T.: FMCW radar system with additional phase evaluation for high accuracy range detection. Radar Conference, pp. 117–120. IEEE (2011)

    Google Scholar 

  16. Huang, Z.S., Qi, Y.L., Sun, J.P., Tan, W.X., Wang, Y.P., Yang, X.L.: Atmospheric phase correction based on coherent scatterers in GB SAR interferometry using a single InSAR Pair. In: 2016 Progress in Electromagnetic Research Symposium (PIERS), pp. 2090–2094. IEEE (2016)

    Google Scholar 

  17. Noferini, L., Pieraccini, M., Mecatti, D., Luzi, G., Atzeni, C., Tamburini, A., Broccolato, M.: Permanent scatterers analysis for atmospheric correction in ground based SAR interferometry. IEEE Trans. Geosci. Remote Sens. 43(7), 1459–1471 (2005)

    Google Scholar 

  18. Kay, S.M.: Cramer Rao lower bound. In: Fundamentals of Statistical Signal Processing, 1st edn. Prentice Hall, pp. 56–57 (1993)

    Google Scholar 

  19. Noferini, L., Pieraccini, M., Mecatti, D., Macaluso, G., Luzi, G., Atzeni, C.: DEM by ground based SAR interferometry. IEEE Geosci. Remote Sens. Lett. 4(4), 659–663 (2007)

    Article  Google Scholar 

  20. Zhao, X., Lan, H., Li, L., Zhang, Y., Zhou, C.: A Multiple regression model considering deformation information for atmospheric phase screen compensation in ground based SAR. IEEE Trans. Geosci. Remote Sens. 58(2), 777–789 (2019)

    Article  Google Scholar 

  21. Belloni, V., Di Tullio, M., Ravanelli, R., Fratarcangeli, F., Nascetti, A., Crespi, M.: COSMO SkyMed range measurements for displacement monitoring using amplitude persistent scatterers. In IGARSS 2020 2020 IEEE International Geoscience and Remote Sensing Symposium, pp. 2495–2498. IEEE (2020)

    Google Scholar 

  22. Qi, G.Q.: Digital signal processing in FMCW radar marine tank gauging system. In: International Conference on Signal Processing, vol.1, pp. 7–10. IEEE (1996)

    Google Scholar 

  23. Chao, B., Zhang, D., Huang, H.: An overview of atmospheric correction for GB SAR. In: 2019 IEEE 19th international conference on communication technology (ICCT), pp. 1062–1072. IEEE (2019)

    Google Scholar 

  24. Biswas, K., Chakravarty, D., Mitra, P., Misra, A.: Estimation of ground deformation using Psinsar with L band Alos Palsar data: A case study of Kolkata. In: India. IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 2119–2122. IEEE (2019)

    Google Scholar 

  25. Strozzi, T., Werner, C., Wiesmann, A., Wegmuller, U.: Topography mapping with a portable real aperture Radar interferometer. IEEE Geosci. Remote Sens. Lett. 9(2), 277–281 (2012)

    Article  Google Scholar 

  26. Huang, P.P., Sun, J.P., Wang, Y.P., Tan, W.X., Yuan, Y.N.: Space varying atmospheric phase correction in ground based SAR interferometry. In: IET International Radar Conference 2015 IET, p. 1458 (2016)

    Google Scholar 

  27. Hu, C., Li, Y., Dong, X., Wang, R., Cui, C., Zhang, B.: Three dimensional deformation retrieval in geosynchronous SAR by multiple aperture interferometry processing: theory and performance analysis. IEEE Trans. Geosci. Remote Sens. 55(11), 6150–6169 (2017)

    Google Scholar 

  28. Poncos, V., Mei, S., Singhroy, V.: Point target interferometry for natural and artificial scatterers. In: 2007 IEEE International Geoscience and Remote Sensing Symposium, pp. 2106–2109, IEEE (2007)

    Google Scholar 

  29. Noferini. L., Pieraccini, M., Mecatti, D., Luzi, G., Atzeni, C., Tamburini, A., Broccolato, M.: Permanent scatterers analysis for atmospheric correction in ground based SAR interferometry. IEEE Trans. Geosci. Remote Sens. 43(7), 1459–1471 (2005)

    Google Scholar 

  30. Max, S., Vossiek, M., Gulden, P.: Fusion of FMCW secondary radar signal beat frequency and phase estimations for high precision distance measurement. In: 2008 European Radar Conference, pp. 124–127. IEEE (2008)

    Google Scholar 

  31. Hu, C., Deng, Y., Wang, R., Tian, W., Zeng, T.: Two dimensional deformation measurement based on multiple aperture interferometry in GB SAR. IEEE Geosci. Remote Sens. Lett. 14(2), 208–212 (2017)

    Google Scholar 

  32. Ayhan, S., Pahl, P., Kayser, T., Pauli, M., Zwick, T.: Frequency estimation algorithm for an extended FMCW radar system with additional phase evaluation. In: 2011 German Microwave Conference, pp. 1–4. IEEE (2011)

    Google Scholar 

  33. Chirico, D., Schirinzi G.: A Kalman smoothing approach for surface deformation monitoring in differential SAR interferometry. In: Proceedings of the 7th European Radar Conference, pp. 491–494. IEEE (2010)

    Google Scholar 

  34. Scherr, S., Ayhan, S., Pauli, M., Zwick, T.: Accuracy limits of a K band FMCW radar with phase evaluation, In: 2012 9th European Radar Conference, pp. 246–249. IEEE (2012)

    Google Scholar 

  35. Lu, X.D., Song, F.M., Song, J.J.: Analyzing on phase error for single pass interferometric SAR. In: 2002 3rd International Conference on Microwave and Millimeter Wave Technology, 2002. Proceedings. ICMMT 2002, pp. 489–492. IEEE (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixing Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, C., Meng, Y., Li, G., Ding, Y. (2022). Accuracy Analysis and Verification of Ground-Based Radar Differential Interferometry. In: Jain, L.C., Kountchev, R., Tai, Y., Kountcheva, R. (eds) 3D Imaging—Multidimensional Signal Processing and Deep Learning. Smart Innovation, Systems and Technologies, vol 298. Springer, Singapore. https://doi.org/10.1007/978-981-19-2452-1_23

Download citation

Publish with us

Policies and ethics