Skip to main content

Performance Analysis of HfO2 and Si3N4 Dielectrics in β-Ga2O3 HEMT

  • Chapter
  • First Online:
HEMT Technology and Applications

Abstract

β-Ga2O3 HEMT with 10 nm AlN as a barrier layer is designed in this paper. The dielectric layer of Si3N4 and HfO2 is introduced beneath the gate as a passivation layer. HfO2 shows high thermal stability and high reliability while Si3N4 shows good interface attribute. The double gate of 0.2 µm and 0.5 µm with a gap of 50 nm aids in enhancing the 2DEG. The relation between dielectric constant and bandgap shows the interdependence on diametric size of the material. The passivation layer controls the gate leakage current and improves the pinch-off characteristics of the device. The transfer characteristic, transconductance, and output conductance demonstrate the device tunability for application in power radio frequency and microwave.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Higashiwaki, K. Sasaki, M. Kuramata, A. Hisahi, T. Masui, S. Yamakoshi, Recent progress in Ga2O3 power devices. Semicond. Sci. Technol. 31(3) (2016)

    Google Scholar 

  2. GalliumOxide (Ga2O3) metal oxide field effect transistors on single crystal β-Ga2O3(010) substrates. Appl. Phys. Lett. 100(013504) (2012)

    Google Scholar 

  3. T. Wadhera, G. Wadhwa, T.K. Bhardwaj, D. Kakkar, B. Raj, Silicon, 1–9 (2020)

    Google Scholar 

  4. T. Wadhera, D. Kakkar, G. Wadhwa, B. Raj, J. Electron. Mater. 48(12), 7635–7646 (2019)

    Article  Google Scholar 

  5. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, Ga2O3 Schottky barrier diodes fabricated by using single crystal β-Ga2O3 (010) substrates. IEEE Electron Device Lett. 34(4), 493–495 (2013)

    Article  Google Scholar 

  6. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Gallium oxide(Ga2O3) metal oxide field effect transistors on single crystal β-Ga2O3(010) substrates. Appl. Phys. Lett. 100(013504), 2012 (2013)

    Google Scholar 

  7. A.J. Green, K.D. Chabak, M. Baldini, N. Moser, R. Gilbert, R.C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, G.H. Jessen, Beta-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett. 38(6), 790–793 (2017)

    Article  Google Scholar 

  8. M. Singh, M.A. Casbon, M.J. Uren, J.W. Pomeroy, S. Dalcanale, S. Karboyan, P.J. Tasker, M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, M. Kuball, Pulsed large signal RF performance of field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett. 39(10), 1572–1575 (2018)

    Article  Google Scholar 

  9. K. Shinohara et al., Scaling of GaN HEMTs and Schottky diodes for sub millimeter-wave MMIC applications. IEEE Trans. Electron Devices 60(10), 2982–2996 (2013)

    Article  Google Scholar 

  10. M.J. Kumar, A. Chaudhry, IEEE Trans. Electron Devices 15, 569–574 (2004)

    Article  Google Scholar 

  11. G. Wadhwa, B. Raj, J. Electron. Mater. 47(8), 4683–4693 (2018)

    Article  Google Scholar 

  12. A. Chaudhry, M.J. Kumar, IEEE Trans. Device Mater. Reliab. 4(1), 99–109 (2004)

    Article  Google Scholar 

  13. S. Kumar, R. Soman, A.S. Pratiyush, R. Muralidharan, D.N. Nath, A Performance comparison between beta-Ga2O3 and GaN HEMTs. IEEE Trans. Electron Devices 66(8), 3310–3317 (2019)

    Article  Google Scholar 

  14. V. Sandeep, J.C. Pravin, J. Nano Electron. Phys. 13(4) (2021)

    Google Scholar 

  15. J.C. Pravin, D. Nirmal, P. Prajoon, J. Ajayan, Physica E: Low Dimension Nanostructure 83.95 (2016)

    Google Scholar 

  16. J. Robertson, High Dielectric Constant Oxides. Eur. Phys. J. Appl. Phys. 28, 265–291 (2004)

    Article  Google Scholar 

  17. U. Pachauri, P. Joshi, N. Arora, Theoretical Model for size, dimension and shape effect on behavior of semiconductor materials. Appl. Phys. A 126, 253 (2020)

    Article  Google Scholar 

  18. T. Ishigaki, R. Tsuchiya, Y. Morita, H. Yoshimoto, N. Sugii, T. Iwamatsu, H. Oda, Y. Inoue, T. Ohta, T. Hiramoto, S. Kimura, Solid-State Electron. 53(7), 717–722 (2009)

    Article  Google Scholar 

  19. A. Mohamed et al., RF performance of Trigate GaN HEMTs. IEEE Trans Electron Dev. 63(11), 4255–4261 (2016)

    Article  Google Scholar 

  20. A.J. Green et al., 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett. 37(7), 902–905 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chauhan, M., Khan, A.N., Tomar, R., Jena, K. (2023). Performance Analysis of HfO2 and Si3N4 Dielectrics in β-Ga2O3 HEMT. In: Lenka, T.R., Nguyen, H.P.T. (eds) HEMT Technology and Applications. Springer Tracts in Electrical and Electronics Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-2165-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2165-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2164-3

  • Online ISBN: 978-981-19-2165-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics