Skip to main content

Linearity Analysis of AlN/β-Ga2O3 HEMT for RFIC Design

  • Chapter
  • First Online:
HEMT Technology and Applications

Abstract

In this work, the different figures-of-merit for AlN/β-Ga2O3 High Electron Mobility Transistor (HEMT) are computed using TCAD. The first and second-order derivatives of transconductance, output-conductance (gd), intrinsic-gain (dB), gate-source capacitance (Cgs), gate-drain capacitance (Cgd), transconductance-generation factor (TGF), transconductance-frequency product (TFP), 1-dB compression-point, extrapolated input voltages (VIP2 and VIP3), third-order input intercept point (IIP3), third-order intermodulation distortion (IMD3), and gain-transconductance frequency product (GTFP) are computed to predict the linearity performance and minimize intermodulation distortion. The present analysis is beneficial for optimizing the device bias point required for RFIC design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Sun et al., Valence and conduction band offsets of β-Ga2O3/AlN heterojunction. Appl. Phys. Lett. 111(16), 162105 (2017)

    Article  Google Scholar 

  2. V. Gottschalch et al., Growth of β-Ga2O3 on Al2O3 and GaAs using metal-organic vapor-phase epitaxy. Phys. status solidi 206(2), 243–249 (2009)

    Article  Google Scholar 

  3. Y. Zhang et al., Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterostructures. Appl. Phys. Lett. 112(17), 173502 (2018)

    Article  Google Scholar 

  4. Y.K. Verma, V. Mishra, S.K. Gupta, A physics based analytical model for MgZnO/ZnO HEMT, J. Circuits, Syst. Comput. (2019)

    Google Scholar 

  5. S. Ghosh, A. Dasgupta, S. Khandelwal, S. Agnihotri, Y.S. Chauhan, Surface-potential-based compact modeling of gate current in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 62(2), 443–448 (2015). https://doi.org/10.1109/TED.2014.2360420

    Article  Google Scholar 

  6. S. Khandelwal, Y.S. Chauhan, T.A. Fjeldly, Analytical modeling of surface-potential and intrinsic charges in AlGaN/GaN HEMT devices. IEEE Trans. Electron Devices 59(10), 2856–2860 (2012). https://doi.org/10.1109/TED.2012.2209654

    Article  Google Scholar 

  7. Y.K. Verma, V. Mishra, P.K. Verma, S.K. Gupta, Analytical modelling and electrical characterisation of ZnO based HEMTs, Int. J. Electron. 106(5), 707–720 (2019)https://doi.org/10.1080/00207217.2018.1545931

  8. S. Krishnamoorthy, Z. Xia, S. Bajaj, M. Brenner, S. Rajan, Delta-doped β-gallium oxide field-effect transistor. Appl. Phys. Express 10(5), 51102 (2017)

    Article  Google Scholar 

  9. J. Zhang, B. Syamal, X. Zhou, S. Arulkumaran, G.I. Ng, A compact model for generic Mis-hemts based on the unified 2deg density expression. IEEE Trans. Electron Devices 61(2), 314–323 (2014). https://doi.org/10.1109/TED.2013.2295400

    Article  Google Scholar 

  10. S. Krishnamoorthy et al., Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor, Appl. Phys. Lett. 111(2), 23502 (2017)

    Google Scholar 

  11. B.W. Krueger, C.S. Dandeneau, E.M. Nelson, S.T. Dunham, F.S. Ohuchi, M.A. Olmstead, Variation of Band Gap and Lattice Parameters of β-(AlxGa1− x)2O3 powder produced by solution combustion synthesis. J. Am. Ceram. Soc. 99(7), 2467–2473 (2016)

    Article  Google Scholar 

  12. Z. Hu et al., Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kV. IEEE Electron Device Lett. 39(6), 869–872 (2018)

    Article  Google Scholar 

  13. Z. Xia et al., β-Ga2O3 delta-doped field-effect transistors with current gain cutoff frequency of 27 GHz. IEEE Electron Device Lett. 40(7), 1052–1055 (2019)

    Article  Google Scholar 

  14. S.W. Kaun, F. Wu, J.S. Speck, β-(AlxGa1− x)2O3/Ga2O3 (010) heterostructures grown on β-Ga2O3 (010) substrates by plasma-assisted molecular beam epitaxy, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 33(4), 41508 (2015)

    Google Scholar 

  15. S. Kumar, R. Soman, A.S. Pratiyush, R. Muralidharan, D.N. Nath, A performance comparison between beta-Ga2O3 and GaN HEMTs. IEEE Trans. Electron Devices 66(8), 3310–3317 (2019)

    Article  Google Scholar 

  16. Y.K. Verma, S.K. Gupta, Center potential based analysis of Si and III-V gate all around field effect transistors (GAA-FETs), Silicon, 1–17 (2020)

    Google Scholar 

  17. S.K. Gupta, A.S. Rawat, Y.K. Verma, V. Mishra, Linearity distortion analysis of junctionless quadruple gate MOSFETs for analog applications, Silicon, 1–9 (2018). https://doi.org/10.1007/s12633-018-9850-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Kumar Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, Y.K., Mishra, V., Singh, R., Lenka, T.R., Gupta, S.K. (2023). Linearity Analysis of AlN/β-Ga2O3 HEMT for RFIC Design. In: Lenka, T.R., Nguyen, H.P.T. (eds) HEMT Technology and Applications. Springer Tracts in Electrical and Electronics Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-2165-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2165-0_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2164-3

  • Online ISBN: 978-981-19-2165-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics