Skip to main content

Artificial Neural Network Established Hexagonal Ring- MPA Intended for Wideband Application

  • Conference paper
  • First Online:
Mobile Computing and Sustainable Informatics

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 126))

  • 483 Accesses

Abstract

Artificial neural networks (ANNs) have established eminent strategies for registering distinctive execution boundaries of microstrip patch antennas (MPAs). In this paper, a hexagonal ring (HR)- MPA is assessed for wideband by exploring ANN paradigm. The parametric inquests of diverse radiating configurations have also been performed to accomplish HRMPA. The proposed work illustrates an ANN paradigm configured with multilayer perceptron (MLP) for anticipating the efficient dimension of the radiator, ground plane, and slot for achieving the desired level of bandwidth (BW) and radiation efficiency (Reff) for wideband operation. For the analysis of the ANN paradigm, 303 examples are taken into consideration, whereas 213-45-45 example/datasets are derived for training, validation, and testing, respectively. The example sets are established by constructing the HRMPA by a high frequency structure simulator (HFSS). The simulated antenna structure provides 138.18% bandwidth above the frequency extent of 2.76–15.1 GHz with more than 80% radiation efficiency for the intact band. The outcomes attained utilizing ANN are compared by the simulation outcomes which are very close contract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahl, J., Bhartia, P.: Microstrip Antennas, 2nd edn. Artech House, Dedham (1980)

    Google Scholar 

  2. Prakasam, V., Sandeep, P.: Dual edge-fed left hand and right hand circularly polarized rectangular micro-strip patch antenna for wireless communication applications. J. Sustain. Wirel. Syst. IRO J. 2(3), 107–117 (2020)

    Google Scholar 

  3. Kumar, G., Ray, K.P.: Broadband Microstrip Antennas. Artech House, USA (2003)

    Google Scholar 

  4. Sze, J.Y., Wong, K.L.: Slotted rectangular microstrip antenna for bandwidth enhancement. Trans. Antennas Propag. IEEE 48(8), 1149–1152 (2000)

    Article  Google Scholar 

  5. Yang, F., Zhang, X.X., Ye, X., Rahmat, S.Y.: Wide-band E-shaped patch antennas for wireless communications. Trans. Antennas Propag. IEEE 49(7), 1094–1100 (2001)

    Article  Google Scholar 

  6. Neyestanak, A.A.L., Kashani, F.H., Barkeshli, K.: W-shaped enhanced-bandwidth patch antenna for wireless communication. Wirel. Pers. Commun. 43, 1257–1265 (2007)

    Article  Google Scholar 

  7. Sun, L., He, M., Hu, J., Zhu, Y., Chen, H.: A butterfly-shaped wideband microstrip patch antenna for wireless communication. Int. J. Antennas Propag. Hindawi 328208, 1–8 (2015)

    Google Scholar 

  8. Abbaspour, M., Hassani, H.R.: Wideband star-shaped microstrip patch antenna. PIER Lett. 1, 61–68 (2008)

    Article  Google Scholar 

  9. Azari, A.: A new super wideband fractal microstrip antenna. Trans. Antennas Propag. IEEE 59(5), 1724–1727 (2011)

    Article  Google Scholar 

  10. Gupta, M., Mutai, K.K., Mathur, V., Bhatnagar, D.: A novel elliptical ring microstrip patch antenna for ultra-wideband applications. Wirel. Pers. Commun. 114, 3017–3029 (2020)

    Article  Google Scholar 

  11. Kumar, M., Ansari, J.A., Saroj, A.K., Saxena, R.: Devesh: a novel microstrip fed L-shaped arm slot and notch loaded RMPA with mended ground plane for bandwidth improvement. PIER C 95, 47–57 (2019)

    Article  Google Scholar 

  12. Saxena, R., Yadav, S., Yadav, R.S., Kumar, M.: A UWB slot-loaded printed inverted C-shaped antenna with truncated ground. In: 2020 International Conference on Electrical and Electronics Engineering, 227–230, IEEE Press, U.P (2020)

    Google Scholar 

  13. Gupta, N., Saxena, J., Bhatia, K.S.: Design of wideband flower-shaped microstrip patch antenna for portable applications. Wirel. Pers. Commun. 109, 17–30 (2019)

    Article  Google Scholar 

  14. Sharma, N., Bhatia, S.S.: Performance enhancement of nested hexagonal ring-shaped compact multiband integrated wideband fractal antennas for wireless applications. Int. J. RF Microw. Comput. Aided Eng. 30(3), 1–19 (2019)

    Google Scholar 

  15. Maurya, R.K., Kanaujia, B.K., Gautam, A.K., Chatterji, S., Singh, A.K.: Circularly polarized hexagonal ring microstrip patch antenna with asymmetrical feed and DGS. Microw. Opt. Technol. Lett. 62(4), 1702–1708 (2019)

    Article  Google Scholar 

  16. Dhakad, S.K., Bhandari, T.: A hexagonal broadband compact microstrip monopole antenna for C Band, X Band and Ku band applications. In: 2017 International Conference on Computing, Communication and Automation, pp. 1532–1536. IEEE Press, Greater Noida (2017)

    Google Scholar 

  17. Mandal, T., Das, S.: Microstrip feed spanner shape monopole antennas for ultra wide band applications. J. Microwaves Optoelectron. Electromagn. Appl. 12(1), 15–22 (2013)

    Article  Google Scholar 

  18. Chakradhar, K.S., Rao, B.R.: Implementation of octagonal and hexagonal strip monopole antennas for UWB applications. Eng. Appl. Sci. ARPN J. 12(22), 6587–6594 (2017)

    Google Scholar 

  19. Ray, K.P., Tiwari, S.: Ultra wideband printed hexagonal monopole antennas. Microw. Antennas Propag., IET 4(4), 437–445 (2010)

    Google Scholar 

  20. Vijayakumar, T.: Comparative study of capsule neural network in various applications. J. Artif. Intell. Capsule Netw. IRO J. 01(01), 19–27 (2019)

    Google Scholar 

  21. Sharma, R., Sungheetha, A.: An efficient dimension reduction based fusion of CNN and SVM model for detection of abnormal incident in video surveillance. J. Soft Comput. Paradigm IRO J. 03(02), 55–69 (2021)

    Article  Google Scholar 

  22. Khan, T., De, A.: Modeling of microstrip antennas using neural networks techniques: a review. Int. J. RF Microwave Comput.-Aided Eng. 25(9), 747–757 (2015)

    Article  Google Scholar 

  23. Mishra, R.K., Patnaik, A.: Neural network-based CAD model for the design of square-patch antennas. Trans. Antennas Propag. IEEE 46(12), 1890–1891 (1998)

    Article  Google Scholar 

  24. Karaboga, D., Guney, K., Sagiroglu, S., Erler, M.: Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas. IEE Proc-Microwaves Antennas Propag. 146(2), 155–159 (1999)

    Article  Google Scholar 

  25. Turker, N., Gunes¸F., Yildirim, T.: Artificial neural design of microstrip antennas. Turk. J. Elec. Engin. 14(3), 445–453 (2006)

    Google Scholar 

  26. Kala, P., Saxena, R., Kumar, M., Kumar, A., Pant, R.: Design of rectangular patch antenna using MLP artificial neural network. J. Global Res. Comput. Sci. 3(5), 11–14 (2012)

    Google Scholar 

  27. Khan, T., De, A.: Prediction of slot shape and slot size for improving the performance of microstrip antennas using knowledge-based neural networks. Int. Scholarly Res. Not. Hindawi 957469, 1–9 (2014)

    Google Scholar 

  28. Kushwah, V.S., Tomar, G.S.: Design and analysis of microstrip patch antennas using artificial neural network. Trends Res. Microstrip Antennas INTECH 69522, 55–75 (2017)

    Google Scholar 

  29. Saglroglu, S., Giiney, K., Erler, M.: Neural computing of the bandwidth of resonant rectangular microstrip antennas. Mathe. Comput. Appl. 3(1), 37–47 (1998)

    Google Scholar 

  30. Neog, D.K., Pattnaik, S.S., Panda D.C., Devi, S.K., Bonomali, Dutta, M.: Design of a wideband microstrip antenna and the use of artificial neural networks in parameter calculation. Antennas Propag. Mag. IEEE 47(3), 60–65 (2005)

    Google Scholar 

  31. Gunavathi, N., Sriramkumar, D.: Estimation of resonant frequency and bandwidth of compact unilateral coplanar waveguide-fed flag shaped monopole antennas using artificial neural network. Microwave Opt. Technol. Lett. 57(2), 337–342 (2015)

    Article  Google Scholar 

  32. Aneesh, M., Singh, A., Kamakshi, K., Ansari, J.A.: Performance investigations of S-shaped RMSA using multilayer perceptron neural network for S-band applications. Radioelectron. Commun. Syst. 62(8), 400–408 (2019)

    Article  Google Scholar 

  33. Nakmouche, M.F., Allam, A.M.M.A., Fawzy, D.E., Lin, D.B., Sree, M.F.A.: Development of H-Slotted DGS based dual band antenna using ANN for 5G applications. In: 15th European Conference on Antennas and Propagation, pp. 1–5. IEEE Press, Germany (2021)

    Google Scholar 

  34. Ojaroudi, M., Bila S., Torrès, F.: A new approach of multi-parameter UWB antenna modeling based on knowledge-based artificial neural network. In: 12th European Conference on Antennas and Propagation, pp. 1–5. IET Press, Londan (2018)

    Google Scholar 

  35. Bhattacharya, A., Roy, B., Islam, M., Chowdhury, S.K., Bhattacharjee, A.K.: An UWB monopole antenna with hexagonal patch structure designed using particle swarm optimization algorithm for wireless applications. In: International Conference on Microelectronics, Computing and Communications, pp. 1–5. IEEE Press, India (2016)

    Google Scholar 

  36. Siddiqui, M.G., Saroj, A.K., Devesh, Saxena, R., Ansari, J.A., Sayeed, S.S.: Soft Computing based ellipsoidal fractal antenna for wide band applications. In: 3rd International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity, pp. 1–4. IEEE, India (2018)

    Google Scholar 

  37. Saxena, R., Kumar, M., Aslam, S.: Evolutionary computing based neuron -computational model for microstrip patch antenna design optimization. Int. J. Comput. Netw. Commun. 13(3), 15–40 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohini Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saxena, R., Ansari, J.A., Kumar, M. (2022). Artificial Neural Network Established Hexagonal Ring- MPA Intended for Wideband Application. In: Shakya, S., Ntalianis, K., Kamel, K.A. (eds) Mobile Computing and Sustainable Informatics. Lecture Notes on Data Engineering and Communications Technologies, vol 126. Springer, Singapore. https://doi.org/10.1007/978-981-19-2069-1_19

Download citation

Publish with us

Policies and ethics