Skip to main content

Leukemia Detection Using Machine and Deep Learning Through Microscopic Images—A Review

  • Chapter
  • First Online:
Prognostic Models in Healthcare: AI and Statistical Approaches

Part of the book series: Studies in Big Data ((SBD,volume 109))

Abstract

Leukemia is a blood malignancy that occurs due to neoplastic proliferation of bone marrow precursor cells resulting in impaired immunity, bleeding tendencies, and ineffective erythropoiesis. Therefore, several manual methods have been developed in the past to detect leukemia, but they have proven to be inaccurate and unreliable. The pathologist may recommend a bone marrow examination to confirm and identify the type of leukemia. This traditional method is time-consuming, and the medical professional’s expertise in diagnosing leukemia may have inaccurate. In this chapter, it has been observed that there are numerous studies for the detection of acute leukemia, but there are only a few studies to detect chronic leukemia. Additionally, microscopic-based methods can be used to analyze microscopic smear images and detect the incidence of leukemia automatically and quickly. It also discusses the benefits, drawbacks, and limitations of a variety of traditional Artificial Intelligence-based approaches for detecting leukemia, such as machine learning and deep learning. Hence, this chapter aims to review the existing literature in the field of medical image processing of blood smear images, with a focus on automated leukemia detection. The analysis of various studies shows that deep learning techniques provide the best results compared to machine learning techniques. Hence, the major drawback in recent studies is that most of the research has been done on locally available datasets. Another weakness in the publicly available datasets is that they have a limited number of images. To solve these issues, research community should focus on large publicly available datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salah, H.T. et al.: Machine learning applications in the diagnosis of leukemia: Current trends and future directions. Int. J. Lab. Hematol. 41(6), 717–725 (2019)

    Google Scholar 

  2. Anilkumar, K., Manoj, V., Sagi, T.: A survey on image segmentation of blood and bone marrow smear images with emphasis to automated detection of Leukemia. Biocybernetics Biomed. Eng. (2020)

    Google Scholar 

  3. International agency for reserch on cancer. Available online at: https://gco.iarc.fr/today/data/factsheets/populations/586-pakistan-fact-sheets.pdf. Accessed on 31-10-2021

  4. Cancer research UK. Available online at: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia/incidence#heading-One. Accessed on 31-10-2021

  5. Ratley, A., Minj, A., Patre, P.: Leukemia disease detection and classification using machine learning approaches: a review. In: 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T). IEEE (2020)

    Google Scholar 

  6. Healthline statistics. Available online at: https://www.healthline.com/health/leukemia/survival-rate-of-leukemia. Accessed on 30-12-2021

  7. Leukemia and noram images. Available online at: https://orthoinfo.aaos.org/en/diseases--conditions/leukemia/. Accessed on 31-10-2021

  8. Simplilearn. Available online at: https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/ai-vs-machine-learning-vs-deep-learning. Accessed on 31-10-2021

  9. Alpaydin, E.: Introduction to machine learning. MIT Press (2020)

    Google Scholar 

  10. Support Vector Machine (SVM). Available online at: https://www.tutorialspoint.com/machine_learning_with_python/classification_algorithms_support_vector_machine.htm. Accessed on 31-10-2021

  11. Bodzas, A., Kodytek, P., Zidek J.: Automated detection of acute lymphoblastic leukemia from microscopic images based on human visual perception. Fron. Bioeng. Biotechnol. 8, 1005 (2020)

    Google Scholar 

  12. MoradiAmin, M., et al.: Enhanced recognition of acute lymphoblastic leukemia cells in microscopic images based on feature reduction using principle component analysis. Front. Biomed. Technol. 2(3), 128–136 (2015)

    Google Scholar 

  13. Mishra, S., Majhi, B., Sa, P.K.: Texture feature based classification on microscopic blood smear for acute lymphoblastic leukemia detection. Biomed. Signal Proc. Control 47, 303–311 (2019)

    Article  Google Scholar 

  14. Acharya, V., Kumar, P.: Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Med. Biol. Eng. Comp. 57(8), 1783–1811 (2019)

    Article  Google Scholar 

  15. Vaghela, H.P., et al.: Leukemia detection using digital image processing techniques. Leukemia 10(1), 43–51 (2015)

    Google Scholar 

  16. Alreza, Z.K.K., Karimian, A.: Design a new algorithm to count white blood cells for classification leukemic blood image using machine vision system. In: 2016 6th International Conference on Computer and Knowledge Engineering (ICCKE). IEEE (2016)

    Google Scholar 

  17. Ahasan, R., Ratul, A.U., Bakibillah, A.: White blood cells nucleus segmentation from microscopic images of strained peripheral blood film during leukemia and normal condition. In: 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV). IEEE (2016)

    Google Scholar 

  18. Shankar, V., et al.: Automatic detection of acute lymphoblasitc leukemia using image processing. In: 2016 IEEE International Conference on Advances in Computer Applications (ICACA). IEEE (2016)

    Google Scholar 

  19. Viswanathan, P.: Fuzzy C means detection of leukemia based on morphological contour segmentation. Procedia Comp. Sci. 58, 84–90 (2015)

    Article  Google Scholar 

  20. Agaian, S., Madhukar, M., Chronopoulos, A.T.: A new acute leukaemia-automated classification system. Comp. Methods Biomech. Biomed. Eng. Imaging Visual. 6(3), 303–314 (2018)

    Google Scholar 

  21. Shafique, S., Tehsin, S.: Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technol. Cancer Res. Treat. 17, 1533033818802789 (2018)

    Article  Google Scholar 

  22. Patel, N., Mishra, A.: Automated leukaemia detection using microscopic images. Procedia Comp. Sci. 58, 635–642 (2015)

    Article  Google Scholar 

  23. Sajjad, M., et al.: Leukocytes classification and segmentation in microscopic blood smear: a resource-aware healthcare service in smart cities. IEEE Access 5, 3475–3489 (2016)

    Article  Google Scholar 

  24. Rawat, J., et al.: Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia. Biocybernetics Biomed. Eng. 37(4), 637–654 (2017)

    Article  Google Scholar 

  25. Moshavash, Z., Danyali, H., Helfroush, M.S.: An automatic and robust decision support system for accurate acute leukemia diagnosis from blood microscopic images. J. Digital Imaging 31(5), 702–717 (2018)

    Article  Google Scholar 

  26. Jothi, G., et al.: Rough set theory with Jaya optimization for acute lymphoblastic leukemia classification. Neural Comput. Appl. 31(9), 5175–5194 (2019)

    Article  Google Scholar 

  27. Vogado, L.H., et al.: Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification. Eng. Appl. Artif. Intell. 72, 415–422 (2018)

    Article  Google Scholar 

  28. Kazemi, F., Najafabadi, T.A., Araabi, B.N.: Automatic recognition of acute myelogenous leukemia in blood microscopic images using k-means clustering and support vector machine. J Med. Signals Sensors 6(3), 183 (2016)

    Article  Google Scholar 

  29. Al-Tahhan, F., et al.: Accurate automatic detection of acute lymphatic leukemia using a refined simple classification. Microsc. Res. Tech. 83(10), 1178–1189 (2020)

    Google Scholar 

  30. Dasariraju, S., Huo, M., McCalla, S.: Detection and classification of immature leukocytes for diagnosis of acute myeloid leukemia using random forest algorithm. Bioengineering 7(4), 120 (2020)

    Article  Google Scholar 

  31. Abdeldaim, A.M., et al.: Computer-aided acute lymphoblastic leukemia diagnosis system based on image analysis. In: Advances in Soft Computing and Machine Learning in Image Processing, pp. 131–147. Springer (2018)

    Chapter  Google Scholar 

  32. Khandekar, R., et al.: Automated blast cell detection for Acute Lymphoblastic Leukemia diagnosis. Biomed. Signal. Proc. Control. 68, 102690 (2021)

    Article  Google Scholar 

  33. Tabian, I., Fu, H., Sharif Khodaei, Z.: A convolutional neural network for impact detection and characterization of complex composite structures. Sensors 19(22), 4933 (2019)

    Article  Google Scholar 

  34. Bre, F., Gimenez, J.M., Fachinotti, V.D.: Prediction of wind pressure coefficients on building surfaces using artificial neural networks. Energy Build. 158, 1429–1441 (2018)

    Article  Google Scholar 

  35. Vogado, L.H., et al.: Diagnosing leukemia in blood smear images using an ensemble of classifiers and pre-trained convolutional neural networks. In: 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). IEEE (2017)

    Chapter  Google Scholar 

  36. Nikitaev, V., et al.: The blood smear image processing for the acute leukemia diagnostics. Inter. J. Bio. Biomedic. Eng. 10, 109–114 (2016)

    Google Scholar 

  37. Li, Y., et al.: Segmentation of white blood cell from acute lymphoblastic leukemia images using dual-threshold method. Comp. Math. Methods Med. (2016)

    Google Scholar 

  38. Aftab, M.O., et al.: Executing Spark BigDL for Leukemia Detection from Microscopic Images using Transfer Learning. In: 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA). IEEE (2021)

    Chapter  Google Scholar 

  39. Das, P.K., Meher, S.: An efficient deep Convolutional Neural Network based detection and classification of Acute Lymphoblastic Leukemia. Expert Sys. Appl. 115311 (2021)

    Google Scholar 

  40. Khobragade, S., Mor, D.D., Patil, C.: Detection of leukemia in microscopic white blood cell images. In: 2015 international conference on information processing (ICIP). IEEE (2015)

    Chapter  Google Scholar 

  41. Loey, M., Naman, M., Zayed, H.: Deep transfer learning in diagnosing leukemia in blood cells. Computers 9(2), 29 (2020)

    Article  Google Scholar 

  42. Pansombut, T., et al.: Convolutional neural networks for recognition of lymphoblast cell images. Comp. Intell. Neurosci. (2019)

    Google Scholar 

  43. Umamaheswari, D., Geetha, S.: A framework for efficient recognition and classification of acute lymphoblastic leukemia with a novel customized-knn classifier. J. Comput. Inf. Technol. 26(2), 131–140 (2018)

    Article  Google Scholar 

  44. Jha, K.K., Dutta, H.S.: Mutual information based hybrid model and deep learning for acute lymphocytic leukemia detection in single cell blood smear images. Comp. Methods Prog. Biomed. 179, (2019)

    Article  Google Scholar 

  45. Genovese, A., et al.: Acute lymphoblastic leukemia detection based on adaptive unsharpening and deep learning. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2021)

    Chapter  Google Scholar 

  46. Tuba, M., Tuba, E.: Generative adversarial optimization (GOA) for acute lymphocytic leukemia detection. Stud. Inform. Control 28(3), 245–254 (2019)

    Article  MathSciNet  Google Scholar 

  47. Boldú, L., et al.: A deep learning model (ALNet) for the diagnosis of acute leukaemia lineage using peripheral blood cell images. Comp. Methods and Prog. Biomed. 202, (2021)

    Article  Google Scholar 

  48. Thanh, T., et al.: Leukemia blood cell image classification using convolutional neural network. Int. J. Comp. Theory Eng. 10(2), 54–58 (2018)

    Article  Google Scholar 

  49. Al-jaboriy, S.S., et al.: Acute lymphoblastic leukemia segmentation using local pixel information. Pattern Recogn. Lett. 125, 85–90 (2019)

    Article  Google Scholar 

  50. Negm, A.S., Hassan, O.A., Kandil, A.H.: A decision support system for Acute Leukaemia classification based on digital microscopic images. Alexandria Eng. J. 57(4), 2319–2332 (2018)

    Article  Google Scholar 

  51. Google Scholar. Available online at: https://scholar.google.com/. Accessed on 30-12-2021

  52. Researchgate. Available online at: https://www.researchgate.net/. Accessed on 30-12-2021

  53. Shoukat, A., Akbar, S.: Artificial intelligence techniques for glaucoma detection through retinal images. In: Applications in Smart Healthcare, Artificial Intelligence and Internet of Things, p. 209 (2021)

    Google Scholar 

  54. Gull, S., Akbar, S.: Artificial intelligence in brain tumor detection through MRI Scans. Artif. Intell. Int. Things 241–276 (2021)

    Google Scholar 

  55. Hassan, S.A., et al.: Artificial intelligence in coronavirus detection: Recent findings and future perspectives. Intell. Comput. Appl. COVID-19, 23–48 (2021)

    Google Scholar 

  56. Akbar, S., et al.: Arteriovenous ratio and papilledema based hybrid decision support system for detection and grading of hypertensive retinopathy. Comp. Methods Prog. Biomed. 154

    Google Scholar 

  57. Akbar, S., et al.: Decision support system for detection of hypertensive retinopathy using arteriovenous ratio. Artif. Intell. Med. 90, 15–24 (2018)

    Article  Google Scholar 

  58. Akbar, S., et al.: Decision support system for detection of papilledema through fundus retinal images. J. Med. Sys. 41(4), 66 (2017)

    Google Scholar 

  59. Saba, T., et al.: Automatic detection of papilledema through fundus retinal images using deep learning. Microsc. Res. Tech. 84(12), 3066–3077 (2021)

    Article  Google Scholar 

  60. Gull, S., Akbar, S., Khan, H.U.: Automated detection of brain tumor through magnetic resonance images using convolutional neural network. BioMed. Res. Int. 2021, (2021)

    Google Scholar 

  61. Gull, S., Akbar, S., Safdar, K.: An interactive deep learning approach for brain tumor detection through 3D-magnetic resonance images. In: 18th International Conference on Frontiers of Information Technology (FIT). Islamabad, Pakistan (2021)

    Google Scholar 

  62. Gull, S., Akbar, S., Shoukat, I.A.: A deep transfer learning approach for automated detection of brain tumor through magnetic resonance imaging. In: 2021 International Conference on Innovative Computing (ICIC), pp. 1–6. (2021). https://doi.org/10.1109/ICIC53490.2021.9692967

    Google Scholar 

  63. Shoukat, A., Akbar, S., Hassan, S.A.E., Rehman, A., Ayesha, N.: Glaucoma diagnosis through convolutional neural network using fundus image. In: 18th International Conference on Frontiers of Information Technology (FIT). Islamabad, Pakistan (2021)

    Google Scholar 

  64. Shoukat. A., Akbar, S., Safdar, K.: A deep learning-based automatic method for early detection of the glaucoma using fundus images. In: 2021 International Conference on Innovative Computing (ICIC), pp. 1–6. (2021). https://doi.org/10.1109/ICIC53490.2021.9693078

    Google Scholar 

  65. Akbar, S., Hassan, S.A.E., Shoukat, A., Alyami, J., Bahaj, S.A.: Detection of microscopic glaucoma through fundus images using deep transfer learning approach. In: Microscopy Research and Technique (2022)

    Google Scholar 

  66. Safdar, K., Akbar, S., Gull, S.: An automated deep learning based ensemble approach for malignant melanoma detection using dermoscopy images. In: 18th International Conference on Frontiers of Information Technology (FIT). Islamabad, Pakistan (2021)

    Google Scholar 

  67. Safdar, K., Akbar, S., Shoukat, A.: A majority voting based ensemble approach of deep learning classifiers for automated melanoma detection. In: 2021 International Conference on Innovative Computing (ICIC), pp. 1–6. (2021). https://doi.org/10.1109/ICIC53490.2021.9692915

  68. Ahmad, M.F., Akbar, S., Hassan, S.A.E., Rehman, A., Ayesha, N.: Deep learning approach to diagnose alzheimer’s disease through magnetic resonance images. In: 2021 International Conference on Innovative Computing (ICIC), pp. 1–6. (2021). https://doi.org/10.1109/ICIC53490.2021.9693041

  69. Hassan, S.A.E., et al.: Deep learning-based automatic detection of central serous retinopathy using optical coherence tomographic images. In: 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA). IEEE (2021)

    Google Scholar 

  70. Hassan, S.A., et al.: Recent developments in detection of central serous retinopathy through imaging and artificial intelligence techniques–a review. IEEE (2021)

    Google Scholar 

  71. Akram, M.U., et al.: Data on fundus images for vessels segmentation, detection of hypertensive retinopathy, diabetic retinopathy and papilledema. Data Brief 29, 105282 (2020)

    Google Scholar 

  72. Akbar, S., et al.: AVRDB: annotated dataset for vessel segmentation and calculation of arteriovenous ratio. In: Proceedings of the 21th Int’l Conf on Image Processing, Computer Vision, & Pattern Recognition (IPCV’17). (2017)

    Google Scholar 

Download references

Acknowledgements

This study was supported by Riphah Artificial Intelligence Research (RAIR) Lab, Riphah International University, Faisalabad, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahzad Akbar .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors of this chapter have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qurat Ul Ain, Akbar, S., Gull, S., Hussain, M., Ayesha, N. (2022). Leukemia Detection Using Machine and Deep Learning Through Microscopic Images—A Review. In: Saba, T., Rehman, A., Roy, S. (eds) Prognostic Models in Healthcare: AI and Statistical Approaches. Studies in Big Data, vol 109. Springer, Singapore. https://doi.org/10.1007/978-981-19-2057-8_10

Download citation

Publish with us

Policies and ethics