Skip to main content

Part of the book series: Springer Water ((SPWA))

Abstract

Hydrological modelling can be characterized as the process of abstracting real hydrological features through small-scale physical models, mathematical analogs, or computer simulations (Chen et al. 2021). Hydrologic models can be separated into several classes according to model structures and spatial processes. In this chapter, after a discussion about the history of these models, a concise glance at the impacts of clime change is examined. Finally, in the last part, the structure of some recognized hydrological models is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Artificial Neural Networks.

  2. 2.

    Fuzzy Logic.

  3. 3.

    Genetic Programming.

  4. 4.

    Wavelet Models.

  5. 5.

    Complex surface.

  6. 6.

    Boundary conditions.

  7. 7.

    Stochastic Model.

  8. 8.

    Deterministic Model.

  9. 9.

    United States Department of Agriculture.

  10. 10.

    Topography based Hydrological Model (Beven and Kirkby 1979; Beven et al. 1984) Source code for TOPMODEL written in R can be found at: https://idea.isnew.info/r.topmodel.html.

  11. 11.

    Hydrologiska Byråns Vattenbalansavdelning (Bergström 1992) http://www.geo.uzh.ch/en/units/h2k/Services/HBVModel.html.

  12. 12.

    National Weather Service River Forecast System (Burnash et al. 1973) http://www.nws.noaa.gov/iao/iao_hydroSoftDoc.php.

  13. 13.

    Visualizing Ecosystem Land Management Assessments (Abdelnour et al. 2011; McKane et al. 2014) https://www.epa.gov/water-research/visualizing-ecosystem-land-management-assessments-velma-model-20.

  14. 14.

    Variable Infiltration Capacity Model (Liang et al. 1994) http://www.hydro.washington.edu/Lettenmaier/Models/VIC/indexold.shtml.

  15. 15.

    MIKE System Hydrologique European (Abbott et al. 1986) https://www.mikepoweredbydhi.com/products/mike-she.

  16. 16.

    Penn State Integrated Hydrologic Modeling System (Qu et al. 2004) http://www.pihm.psu.edu/.

  17. 17.

    Kinematic Runoff and Erosion Model (Woolhiser et al. 1990) http://www.tucson.ars.ag.gov/kineros/.

  18. 18.

    Penn State Integrated Hydrologic Modeling.

  19. 19.

    Thiessen Polygon Method.

  20. 20.

    North American Land Data Assimilation System.

  21. 21.

    Computational Intelligence.

  22. 22.

    Data Driven Modelling.

  23. 23.

    Data Mining.

  24. 24.

    Knowledge Discovery in Databases.

  25. 25.

    Intelligent Data Analysis.

  26. 26.

    Soft Computing.

  27. 27.

    Neural Networks.

  28. 28.

    Fuzzy Logic.

  29. 29.

    Pattern Recognition.

  30. 30.

    Evolutionary Computation.

  31. 31.

    Bayesian Reasoning.

  32. 32.

    Fuzzy Rule-Based Systems.

  33. 33.

    Statistical Method.

  34. 34.

    Nonlinear Partial Differential Equations.

  35. 35.

    Partial Differential Equations.

  36. 36.

    Modified Global Soil Loss Equation.

  37. 37.

    Digital terrain analysis.

References

  • Abbott MB, Bathurst JC, Cunge JA, O’Connell PE, Rasmussen J (1986) An introduction to the European hydrological system—systeme hydrologique Europeen, “SHE”, 1: history and philosophy of a physically-based, distributed modelling system. J Hydrol 87:45–59. https://doi.org/10.1016/0022-1694(86)90114-9

    Article  Google Scholar 

  • Abdelnour A, Stieglitz M, Pan F, Mckane R (2011) Catchment hydrological responses to forest harvest amount and spatial pattern. Water Resour Res 47:9521. https://doi.org/10.1029/2010WR010165

  • Abrahart RJ, Anctil F, Coulibaly P, Dawson CW, Mount NJ, See LM, Shamseldin AY, Solomatine DP, Toth E, Wilby RL (2012a) Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting. Prog Phys Geogr 36:480–513. https://doi.org/10.1177/0309133312444943

    Article  Google Scholar 

  • Abrahart RJ, Mount NJ, Shamseldin AY (2012b) Neuroemulation: definition and key benefits for water resources research. Hydrol Sci J-J Des Sci Hydrol 57:407–423. https://doi.org/10.1080/02626667.2012.658401

    Article  Google Scholar 

  • Ahmad S, Simonovic SP (2005) An artificial neural network model for generating hydrograph from hydro-meteorological parameters. J Hydrol 315:236–251. https://doi.org/10.1016/j.jhydrol.2005.03.032

    Article  Google Scholar 

  • Andrews WH, Riley JP, Masteller MB (1978) Mathematical modeling of a sociological and hydrologic decision system

    Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part l: model development. J Am Water Resour Assoc 34:73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x

    Article  CAS  Google Scholar 

  • Authority TV (1972) A continuous daily streamflow model: upper bear creek. Exp Proj Res Pap No 8

    Google Scholar 

  • Bathurst JC, O’connell P (1992) Future of distributed modelling: the systeme hydrologique Europeen (WWW document). Hydrol Process. https://scholar.google.com/scholar_lookup?title=Futureofdistributedparametermodeling%3ATheSystemeHydrologiqueEuropeen&journal=HydrologicalProcesses&volume=6&pages=265-277&publication_year=1992&author=Bathurst%2CJ.C.&author=O%27Connell%2CP.E. Last Accessed 14 May 21

  • Bear J (2012) Hydraulics of groundwater. Courier Corporation

    Google Scholar 

  • Beasley DB, Monke EJ, Huggins LF (1977) ANSWERS: a model for watershed planning, purdue agricultural experiment station. J Pap

    Google Scholar 

  • Becker A, Nemec J (1987) Macroscale hydrologic models in support to climate research. Influ Clim Chang Clim Var Hydrol Regime Water Resour 431–445

    Google Scholar 

  • Becker A, Serban P (1990) World meteorological organization hydrological models for water-resources system design and operation

    Google Scholar 

  • Bergström S, Harlin J, Lindström G (1992) Spillway design floods in Sweden: I. New guidelines. Hydrol Sci J 37:505–519

    Google Scholar 

  • Beven K (2013) So how much of your error is epistemic? Lessons from Japan and Italy. Hydrol Process 27:1677–1680. https://doi.org/10.1002/hyp.9648

    Article  ADS  Google Scholar 

  • Beven K (2011) Distributed models and uncertainty in flood risk management

    Google Scholar 

  • Beven K (2012a) Rainfall-runoff modelling the primer, 2nd ed

    Google Scholar 

  • Beven K (2012b) Down to basics: runoff processes and the modelling process. In: Rainfall-runoff modelling, pp. 1–23. Wiley & Sons, Ltd. https://doi.org/10.1002/9781119951001.ch1

  • Beven K, Germann P (1984) A distribution function model of channelling flow in soils based on kinematic wave theory. In: Proceedings of the ISSS Symposium on Water and Solute Movement in Heavy Clay Soils

    Google Scholar 

  • Beven K, Lamb R, Quinn P, Romanowicz R, Freer J (1995) TOPMODEL. Comput Model Watershed Hydrol 627–668

    Google Scholar 

  • Beven K, Westerberg I (2011) On red herrings and real herrings: disinformation and information in hydrological inference. Hydrol Process. https://doi.org/10.1002/hyp.7963

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69. https://doi.org/10.1080/02626667909491834

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ, Kirkby AJ (1979) A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant) A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant A physically based, variable contributing area model of basin hydrology. Hydrol Sci J 24:43–69. https://doi.org/10.1080/02626667909491834

    Article  Google Scholar 

  • Biswas AK (1970) History of hydrology. North-Holland Publishing Company

    Google Scholar 

  • Bouadi T, Cordier MO, Moreau P, Quiniou R, Salmon-Monviola J, Gascuel-Odoux C (2017) A data warehouse to explore multidimensional simulated data from a spatially distributed agro-hydrological model to improve catchment nitrogen management. Environ Model Softw 97:229–242. https://doi.org/10.1016/j.envsoft.2017.07.019

  • Bouraoui F, Braud I, Dillaha TA (2002) ANSWERS: a nonpoint source pollution model for water, sediment and nutrient losses. Math Model Small Watershed Hydrol Appl 833–882

    Google Scholar 

  • Bowden GJ, Maier HR, Dandy GC (2012) Real-time deployment of artificial neural network forecasting models: understanding the range of applicability. Water Resour Res 48:10549. https://doi.org/10.1029/2012WR011984

    Article  ADS  Google Scholar 

  • Bras RL, Rodriguez-Iturbe I (1993) Random functions and hydrology. Courier Corporation

    Google Scholar 

  • Brunner P, Simmons CT (2012) HydroGeoSphere: a fully integrated, physically based hydrological model. Ground Water. https://doi.org/10.1111/j.1745-6584.2011.00882.x

  • Burnash R, Ferral R, McGuire R (1973) A generalized streamflow simulation system: conceptual modeling for digital computers

    Google Scholar 

  • Burnash RJC (1975) Chapter 10: the NWS river forecast system catchment modeling. Comput Model Watershed Hydrol

    Google Scholar 

  • Carter T, Parry M, Harasawa H, Nishioka S (1994) IPCC technical guidelines for assessing climate change impacts and adaptations, in: part of the IPCC special report to the first session of the conference of the parties to the UN framework convention on climate change, intergovernmental panel on climate change. Department of Geography, University College London, UK and Center for Global

    Google Scholar 

  • Chapuis RP (2012) Predicting the saturated hydraulic conductivity of soils: a review. Bull Eng Geol Environ 71:401–434. https://doi.org/10.1007/s10064-012-0418-7

    Article  Google Scholar 

  • Chen G, Hua W, Fang X, Wang C, Li X (2021) Distributed-framework basin modeling system: II. Hydrol Model Syst. Water 13:744

    Google Scholar 

  • Chiew F, Hydrology TM-J of (1994) undefined, n.d. Application of the daily rainfall-runoff model MODHYDROLOG to 28 Australian catchments. Elsevier

    Google Scholar 

  • Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. MacGraw-Hill. Inc., New York

    Google Scholar 

  • Clark MP, Kavetski D, Fenicia F (2011a) Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resour Res 47:9301. https://doi.org/10.1029/2010WR009827

    Article  ADS  Google Scholar 

  • Clarke RT (1988) Stochastic processes for water scientists: development and applications. Wiley & Sons Ltd.

    Google Scholar 

  • Clarke RT (1973) A review of some mathematical models used in hydrology, with observations on their calibration and use. J Hydrol 19:1–20. https://doi.org/10.1016/0022-1694(73)90089-9

    Article  Google Scholar 

  • Corzo GA, Solomatine DP, Hidayat H, De Wit M, Werner M, Uhlenbrook S, Price RK (2009) Combining semi-distributed process-based and data-driven models in flow simulation: a case study of the Meuse river basin. Hydrol Earth Syst Sci 13:1619–1634. https://doi.org/10.5194/hess-13-1619-2009

    Article  ADS  Google Scholar 

  • Crawford N, Linsley R (1966a) Digital simulation in hydrology’stanford watershed model 4

    Google Scholar 

  • Crawford NH, Linsley RK (1966b) Digital simulation in hydrology’ stanford watershed model 4

    Google Scholar 

  • Darcy H (1856) Les fontaines publiques de la ville de Dijon: exposition et application. Victor Dalmont

    Google Scholar 

  • Dawdy D, Lichty R, Bergmann J (1972) A rainfall-runoff simulation model for estimation of flood peaks for small drainage basins

    Google Scholar 

  • Dawdy DR, O’Donnell T (1965) Mathematical models of catchment behavior. J Hydraul Div 91:123–137

    Article  Google Scholar 

  • Dawson CW, Mount NJ, Abrahart RJ, Louis J (2014) Sensitivity analysis for comparison, validation and physical legitimacy of neural network-based hydrological models. J. Hydroinformatics 16:1–18. https://doi.org/10.2166/hydro.2013.222

    Article  Google Scholar 

  • Dawson CW, Wilby RL (2001) Hydrological modelling using artificial neural networks. Prog Phys Geogr 25:80–108. https://doi.org/10.1177/030913330102500104

    Article  Google Scholar 

  • Devia GK, Ganasri BP, Dwarakish GS (2015) A review on hydrological models. Aquat Procedia 4:1001–1007. https://doi.org/10.1016/j.aqpro.2015.02.126

    Article  Google Scholar 

  • Donigian A (1977) Agricultural runoff management (ARM) model version II: refinement and testing

    Google Scholar 

  • Duan Q, Gupta HV, Sorooshian S, Rousseau AN, Turcotte R (2004) Calibration of watershed models. American Geophysical Union

    Google Scholar 

  • Ewen J, Parkin G, O’Connell PE (2000) SHETRAN: distributed river basin flow and transport modeling system. J Hydrol Eng 5:250–258. https://doi.org/10.1061/(asce)1084-0699(2000)5:3(250)

    Article  Google Scholar 

  • Fares A, El-Kadi AI (2008) Coastal watershed management. WIT Press

    Google Scholar 

  • Feldman AD (1981) HEC models for water resources system simulation: theory and experience. In: Advances in hydroscience, pp. 297–423. Elsevier.

    Google Scholar 

  • Fenicia F, Kavetski D, Savenije HHG (2011) Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development. Water Resour Res 47. https://doi.org/10.1029/2010WR010174

  • Flury M, Flühler H, Jury WA, Leuenberger J (1994) Susceptibility of soils to preferential flow of water: a field study. Water Resour Res 30:1945–1954. https://doi.org/10.1029/94WR00871

    Article  ADS  Google Scholar 

  • Fortin J-P, Turcotte R, Massicotte S, Moussa R, Fitzback J, Villeneuve J-P (2001) Distributed watershed model compatible with remote sensing and GIS data. I: description of model. J Hydrol Eng 6:91–99. https://doi.org/10.1061/(asce)1084-0699(2001)6:2(91)

    Article  Google Scholar 

  • Gelhar LW (1986) Stochastic subsurface hydrology from theory to applications. Water Resour Res 22:135S-145S

    Article  Google Scholar 

  • Gleick PH (1986) Methods for evaluating the regional hydrologic impacts of global climatic changes. J Hydrol 88:97–116. https://doi.org/10.1016/0022-1694(86)90199-X

    Article  Google Scholar 

  • Gong W, Gupta HV, Yang D, Sricharan K, Hero AO (2013) Estimating epistemic and aleatory uncertainties during hydrologic modeling: an information theoretic approach. Water Resour Res 49:2253–2273. https://doi.org/10.1002/wrcr.20161

    Article  ADS  Google Scholar 

  • Granata F, Gargano R, de Marinis G (2016) Support vector regression for rainfall-runoffmodeling in urban drainage: a comparison with the EPA’s storm water management model. Water (Switz) 8:1–13. https://doi.org/10.3390/w8030069

    Article  Google Scholar 

  • Gupta HV, Nearing GS (2014) Debates—the future of hydrological sciences: a (common) path forward? Using models and data to learn: a systems theoretic perspective on the future of hydrological science. Water Resour Res. https://doi.org/10.1002/2013WR015096

  • Holton JR, Staley DO (1973) An introduction to dynamic meteorology. Am J Phys 41:752–754. https://doi.org/10.1119/1.1987371

    Article  ADS  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am Bull

    Google Scholar 

  • Horton RE (1933) The rôle of infiltration in the hydrologic cycle. Eos Trans Am Geophys Union 14:446–460. https://doi.org/10.1029/TR014i001p00446

    Article  Google Scholar 

  • Hsu P-C, Nguyen C (1995) Theoretical investigation of a class of new planar transmission lines from microwave and millimeter-wave integrated circuits. In: Millimeter and submillimeter waves vol. II, pp. 159–161. SPIE. https://doi.org/10.1117/12.224222

  • Huber WC (1995) Chapter 22: EPA storm water management model SWMM, Computer models of watershed hydrology. In: Singh VP (ed)

    Google Scholar 

  • Huber, W.C., Dickinson, R.E., 1988. Storm water management model user’s manual, version 4. Rep. No. EPA/600/3–88/001a, US Environmental Protection Agency, Athens, Ga.

    Google Scholar 

  • Huggins LF, Monke EJ (1970) Mathematical simulation of hydrologic events of ungaged watersheds

    Google Scholar 

  • Jackson B, Mcintyre N, Pechlivanidis IG, Jackson BM, Mcintyre NR, Wheater HS (2011) Catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and app catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications. Artic GlobalNEST Int J

    Google Scholar 

  • Johnson F, Sharma A, Singh V (2017) Handbook of applied hydrology

    Google Scholar 

  • Kampf SK, Burges SJ (2007) A framework for classifying and comparing distributed hillslope and catchment hydrologic models. Wiley Online Libr. 43:5423. https://doi.org/10.1029/2006WR005370

    Article  Google Scholar 

  • Kavetski D, Clark MP (2010) Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction. Water Resour Res 46. https://doi.org/10.1029/2009WR008896

  • Kavetski D, Fenicia F (2011) Elements of a flexible approach for conceptual hydrological modeling: 2. Application and experimental insights of a flexible approach for conceptual hydrological modeling: 2. Application and experimental insights. Elem Water Resour Res 47:11511. https://doi.org/10.1029/2011WR010748

  • Kite GW (1995) The SLURP model. Comput Model Watershed Hydrol 521–562

    Google Scholar 

  • Knapp HV, Durgunoglu A, Ortel TW (1991) Illinois state water survey a review of rainfall-runoff modeling for stormwater management, ideals.illinois.edu

    Google Scholar 

  • Knudsen J, Thomsen A, Refsgaard JC (1986) WATBAL a semi-distributed, physically based hydrological modelling system. Nord Hydrol 17:347–362. https://doi.org/10.2166/nh.1986.0026

    Article  Google Scholar 

  • Kokkonen T, Koivusalo H, Karvonen T (2001) A semi-distributed approach to rainfall-runoff modelling—a case study in a snow affected catchment. Environ Model Softw 16:481–493. https://doi.org/10.1016/S1364-8152(01)00028-7

    Article  Google Scholar 

  • Kouwen N, Fathi-Moghadam M (2000) Friction factors for coniferous trees along rivers. J Hydraul Eng 126:732–740. https://doi.org/10.1061/(asce)0733-9429(2000)126:10(732)

    Article  Google Scholar 

  • Kouwen N, Soulis ED, Pietroniro A, Donald J, Harrington RA (1993) Grouped response units for distributed hydrologic modeling. J Water Resour Plan Manag 119:289–305. https://doi.org/10.1061/(asce)0733-9496(1993)119:3(289)

    Article  Google Scholar 

  • Kumar P, Folk M, Markus M, Alameda J (2005) Hydroinformatics: data integrative approaches in computation, analysis, and modeling

    Google Scholar 

  • Lall U (2014) Debates-The future of hydrological sciences: a (common) path forward? One water. One world. Many climes. Many Souls Wiley Online Libr 50:5335–5341. https://doi.org/10.1002/2014WR015402

    Article  Google Scholar 

  • Laurenson E, Watershed RM-C models of (1995) undefined, n.d. RORB: hydrograph synthesis by runoff routing. cabdirect.org

    Google Scholar 

  • Laurenson EM (1964) A catchment storage model for runoff routing. J Hydrol 2:141–163

    Article  Google Scholar 

  • Laurenson EM, Mein RG (1990) RORB-version 4, runoff routing program: user manual. Monash University Department of Civil Engineering

    Google Scholar 

  • Liang X (1994) A two-layer variable infiltration capacity land surface representation for general circulation models. Ph. D. Thesis.

    Google Scholar 

  • Liang S, Li X, Xie X (2013) Land surface observation, modeling and data assimilation

    Google Scholar 

  • Ma X, Cheng W (1996) A modeling of hydrological processes in a large low plain area including lakes and ponds. J Jpn Soc Hydrol Water Resour 9:320–329

    Article  Google Scholar 

  • Ma X, Fukushima Y, Hashimoto E, Hiyama E (1999) Application of a simple SVAT model in a mountain catchment under temperate humid climate. J Jpn Soc Hydrol Water Resour

    Google Scholar 

  • May RJ, Dandy GC, Maier HR, Nixon JB (n.d.) Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Elsevier. https://doi.org/10.1016/j.envsoft.2008.03.008

  • Mays LW, Tung Y-K (2002) Hydrosystems engineering and management. Water Resour Publ

    Google Scholar 

  • McKane R, Brookes A, Djang K, Stieglitz M, Abdelnour A, Pan F, Halama J, Pettus P, Phillips D (2014) Visualizing ecosystem land management assessments (VELMA) v. 2.0: User manual and technical documentation

    Google Scholar 

  • McMillan H, Jackson B, Clark M, Kavetski D, Woods R (2011) Rainfall uncertainty in hydrological modelling: an evaluation of multiplicative error models. J Hydrol 400:83–94. https://doi.org/10.1016/j.jhydrol.2011.01.026

    Article  Google Scholar 

  • Metcalf E (1971) University of Florida and Water Resources Engineers, Inc, Storm Water Management Model, Volume I-Final Report. EPA Report 11024 DOC 07/71 (NTIS PB-203289). Environ. Prot. Agency Washington, DC, USA 352.

    Google Scholar 

  • Mitchell TM (1997) Machine learning

    Google Scholar 

  • Moradkhani H, Sorooshian S (2008) General review of rainfall-runoff modeling: model calibration, data assimilation, and uncertainty analysis. In: Hydrological modelling and the water cycle, pp 1–24. Springer, Berlin. https://doi.org/10.1007/978-3-540-77843-1_1

  • Mount NJ, Maier HR, Toth E, Elshorbagy A, Solomatine D, Chang FJ, Abrahart RJ (2016) Data-driven modelling approaches for socio-hydrology: opportunities and challenges within the Panta Rhei science plan. Hydrol Sci J 61:1192–1208. https://doi.org/10.1080/02626667.2016.1159683

    Article  Google Scholar 

  • Mulvany TJ (1850) On the use of self-registering rain and flood gauges in making observations of the rainfall and flood discharges in a given catchment. Trans Minutes Proceeding Inst Civ Eng Irel Sess 1

    Google Scholar 

  • Ng HYF, Marsalek J (1992) Sensitivity of streamflow simulation to changes in climatic inputs. Nord Hydrol 23:257–272. https://doi.org/10.2166/nh.1992.0018

    Article  Google Scholar 

  • Pechlivanidis IG, Jackson BM, Mcintyre NR, Wheater HS (2011) Catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications. Glob Nest J. https://doi.org/10.30955/gnj.000778

  • Perrin C, Michel C, Andréassian V (2003) Improvement of a parsimonious model for streamflow simulation. J Hydrol 279:275–289. https://doi.org/10.1016/S0022-1694(03)00225-7

    Article  Google Scholar 

  • Phillips NA (1956) The general circulation of the atmosphere: a numerical experiment. QJR Meteorol Soc 82:123–164. https://doi.org/10.1002/qj.49708235202

    Article  ADS  Google Scholar 

  • Pinder GF, Gray WG (2013) Finite element simulation in surface and subsurface hydrology. Elsevier

    Google Scholar 

  • Poston T, Stewart I (2014) Catastrophe theory and its applications

    Google Scholar 

  • Pyle D, Cerra DD, Kaufmann M (1999) Data preparation for data mining

    Google Scholar 

  • Qu T, Kim Y, Yaremchuk M, … TT-J of 2004, undefined (n.d.) Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? journals.ametsoc.org

    Google Scholar 

  • Quick MC (1995) The UBC watershed model. Comput Model Watershed Hydrol 233–280

    Google Scholar 

  • Quick MC, Pipes A (1977) UBC watershed model/Le modèle du bassin versant UCB. Hydrol Sci J 22:153–161

    Article  Google Scholar 

  • Refsgaard JC, Knudsen J (1996) Operational validation and intercomparison of different types of hydrological models. Water Resour Res 32:2189–2202. https://doi.org/10.1029/96WR00896

    Article  ADS  Google Scholar 

  • Refsgaard JC, Storm B, Mike SHE (1995) Computer models of watershed hydrology. Water Resour Publ 809–846

    Google Scholar 

  • Remson I, Hornberger GM, Molz FJ (1971) Numerical methods in subsurface hydrology

    Google Scholar 

  • Rinsema JG (2014) Comparison of rainfall runoff models for the Florentine Catchment

    Google Scholar 

  • Rockwood D (1982) Theory and practice of the SSARR model as related to analyzing and forecasting the response of hydrologic systems. Appl Model Catchment Hydrol

    Google Scholar 

  • Ross TJ (2010) Fuzzy logic with engineering applications, 3rd ed. Wiley & Sons. https://doi.org/10.1002/9781119994374

  • Schulze RE (1997) Impacts of global climate change in a hydrologically vulnerable region: challenges to South African hydrologists. Prog Phys Geogr 21:113–136

    Article  Google Scholar 

  • Sen Z (2009) Fuzzy logic and hydrological modeling

    Google Scholar 

  • Singh V (1995a) Computer models of watershed hydrology

    Google Scholar 

  • Singh VP (1995b) Computer models of watershed hydrology. Water Resources Publications

    Google Scholar 

  • Singh V, Frevert D (2002a) Mathematical models of small watershed hydrology and applications

    Google Scholar 

  • Singh V, Frevert D (2002b) Mathematical models of large watershed hydrology

    Google Scholar 

  • Singh VP, Frevert DK (2002c) Mathematical models of large watershed hydrology. Water Resources Publication

    Google Scholar 

  • Singh VP, Frevert DK (2002d) Mathematical models of small watershed hydrology. Water Resources Publication

    Google Scholar 

  • Singh VP, Woolhiser DA (2002) Mathematical modeling of watershed hydrology. J Hydrol Eng 7:270–292. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(270)

    Article  Google Scholar 

  • Singh VP, Frevert DK (2006) Watershed models. CRC Press, Fort Lauderdale, Florida

    Google Scholar 

  • Singh VP, Jain SK, Tyagi A (2007) Risk and reliability analysis: a handbook for civil and environmental engineers. Am Soc Civ Eng

    Google Scholar 

  • Singh V (2013) Entropy theory and its application in environmental and water engineering

    Google Scholar 

  • Singh V (2014) Entropy theory in hydraulic engineering: an introduction

    Google Scholar 

  • Singh VP (2015) Entropy theory in hydraulic engineering: An introduction. Am Soc Civ Eng (ASCE). https://doi.org/10.1061/9780784412725

    Article  Google Scholar 

  • Singh VP (2017) Handbook of applied hydrology, 2nd ed. McGraw-Hill Education, New York

    Google Scholar 

  • Singh VP (2018) Review of fluoride in drinking water: status, issues, and solutions by AK Gupta and S. Ayoob

    Google Scholar 

  • Singh VP, Zhang L (2018) Copula–entropy theory for multivariate stochastic modeling in water engineering. Geosci Lett. https://doi.org/10.1186/s40562-018-0105-z

  • Sitterson J, Knightes C, Parmar R, Wolfe K, Avant B, Muche M (2018) An overview of rainfall-runoff model types

    Google Scholar 

  • Sittner WT, Schauss CE, Monro JC (1969) Continuous hydrograph synthesis with an API-type hydrologic model. Water Resour Res 5:1007–1022

    Article  ADS  Google Scholar 

  • Sivakumar B, Berndtsson R (2010) Advances in data-based approaches for hydrologic modeling and forecasting

    Google Scholar 

  • Soil Conservation Service (SCS), Computer model for project formulation hydrology, Tech (1965). USDA,Washington

    Google Scholar 

  • Solomatine D, See LM, Abrahart RJ (2009) Data-driven modelling: concepts, approaches and experiences. Pract Hydroinformatics 17–30

    Google Scholar 

  • Solomatine DP (2005) Data-driven modeling and computational intelligence methods in hydrology. In: Encyclopedia of hydrological Sciences. Wiley & Sons, Ltd. https://doi.org/10.1002/0470848944.hsa021

  • Solomatine DP, Wagener T (2011) Hydrological modeling. In: Treatise on water science, pp 435–457. Elsevier. https://doi.org/10.1016/B978-0-444-53199-5.00044-0

  • Srinivasulu S, Jain A (2008) Rainfall-runoff modelling: integrating available data and modern techniques. In: Practical hydroinformatics, pp 59–70. Springer Berlin. https://doi.org/10.1007/978-3-540-79881-1_5

  • Sugawara M (1995) Tank model. Comput Model Watershed Hydrol

    Google Scholar 

  • Sugawara M (1974) Tank model and its application to Bird Creek, Wollombi Brook, Bikin River, Kitsu River, Sanaga River and Nam Mune. Res Notes Natl Res Cent Disaster Prev 11:1–64

    Google Scholar 

  • Suryavanshi S, Pandey A, Chaube UC (2017) Hydrological simulation of the Betwa River basin (India) using the SWAT model. Hydrol Sci J 62:960–978. https://doi.org/10.1080/02626667.2016.1271420

    Article  CAS  Google Scholar 

  • Tayfur G (2014) Soft computing in water resources engineering: artificial neural networks, fuzzy logic and genetic algorithms

    Google Scholar 

  • Todini E (2007) Hydrological catchment modelling: past, present and future. Hydrol Earth Syst Sci

    Google Scholar 

  • Todini E (1996) The ARNO rainfall-runoff model. J Hydrol 175:339–382. https://doi.org/10.1016/S0022-1694(96)80016-3

    Article  Google Scholar 

  • Todini E (1995) New trends in modelling soil processes from hillslope to GCM scales. In: The role of water and the hydrological cycle in global change, pp 317–347. Springer, Berlin. https://doi.org/10.1007/978-3-642-79830-6_11

  • Todini E (1988) Rainfall-runoff modelling—past, present and future. J Hydrol 100:341–352. https://doi.org/10.1016/0022-1694(88)90191-6

    Article  Google Scholar 

  • Tung Y-K, Yen B-C (2005) Hydrosystems engineering uncertainty analysis. Asce

    Google Scholar 

  • Uhlenbrook S, Roser S, Tilch N (2004) Hydrological process representation at the meso-scale: the potential of a distributed, conceptual catchment model. J Hydrol 278–296. https://doi.org/10.1016/j.jhydrol.2003.12.038. (Elsevier)

  • USDA (1986) Urban hydrology for small watersheds, second Ed. ed. United States Department of Agriculture

    Google Scholar 

  • US HEC, US WRSC (1981) HEC-1 flood hydrograph package: users manual. US Army Corps of Engineers, Water Resources Support Center, Hydrologic

    Google Scholar 

  • Vandenberg A (1989) A physical model of vertical integration, drain discharge, and surface runoff for layered soils. National Hydrology Research Institute

    Google Scholar 

  • Vaze J, Jordan P, Beecham R, Frost A, Summerell G (2011) Guidelines for rainfall-runoff modelling: towards best practice model application

    Google Scholar 

  • Wheater H, Jakeman A, Beven K (1993) Progress and directions in rainfall-runoff modelling

    Google Scholar 

  • Wigley TML, Jones PD, Briffa KR, Smith G (1990) Obtaining sub-grid-scale information from coarse-resolution general circulation model output. J Geophys Res 95:1943–1953. https://doi.org/10.1029/JD095iD02p01943

    Article  ADS  Google Scholar 

  • Wigmosta MS, Vail LW, Lettenmaier DP (1994) A distributed hydrology-vegetation model for complex terrain. Water Resour Res 30:1665–1679

    Article  ADS  Google Scholar 

  • Wilderer PA (2010) Treatise on water science. Newnes

    Google Scholar 

  • Woolhiser DA, Smith RE, Goodrich DC (1990) KINEROS: a kinematic runoff and erosion model: documentation and user manual

    Google Scholar 

  • Xu CY (1999) Climate change and hydrologic models: a review of existing gaps and recent research developments. Water Resour Manag 13:369–382. https://doi.org/10.1023/A:1008190900459

    Article  Google Scholar 

  • Xu J, Lv C, Zhang M, Yao L, Zeng Z (2015) Equilibrium strategy-based optimization method for the coal-water conflict: a perspective from China. J Environ Manage 160:312–323. https://doi.org/10.1016/j.jenvman.2015.06.036

    Article  PubMed  Google Scholar 

  • Yang B, Li M-H (2011) Assessing planning approaches by watershed streamflow modeling: case study of The Woodlands; Texas. Landsc Urban Plan 99:9–22

    Article  Google Scholar 

  • YoosefDoost A, Asghari H, Abunuri R, Sadegh Sadeghian M (2018a) Comparison of CGCM3, CSIRO MK3 and HADCM3 models in estimating the effects of climate change on temperature and precipitation in Taleghan Basin. Am J Environ Prot 6:28–34. https://doi.org/10.12691/env-6-1-5

  • YoosefDoost A, YoosefDoost I, Asghari H, Sadegh Sadeghian M (2018b) Comparison of HadCM3, CSIRO Mk3 and GFDL CM2.1 in prediction the climate change in Taleghan River Basin. Am J Civ Eng Archit 6:93–100. https://doi.org/10.12691/ajcea-6-3-1

  • Zeeman EC (1976) Catastrophe theory. JSTOR

    Google Scholar 

  • Zhang G, Xiang X, Tang H (2011) Time series prediction of chimney foundation settlement by neural networks. Int J Geomech 11:154–158. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Bozorg-Haddad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoosefdoost, I., Bozorg-Haddad, O., Singh, V.P., Chau, K.W. (2022). Hydrological Models. In: Bozorg-Haddad, O. (eds) Climate Change in Sustainable Water Resources Management. Springer Water. Springer, Singapore. https://doi.org/10.1007/978-981-19-1898-8_8

Download citation

Publish with us

Policies and ethics