Skip to main content

Reality of Photovoltaic Technology Applied to Homes not Connected to the Grid Connected Using to Lithium Batteries Without Generator Set Support

  • Chapter
  • First Online:
New Technologies in Building and Construction

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 258))

  • 642 Accesses

Abstract

There are dwellings in which the owner does not have the possibility of obtaining electricity from the grid. The goal of this study is to find out contingencies of a totally autonomous solar energy system that uses photovoltaic panels and lithium batteries, without specific support from generator equipment powered by fossil fuels. For this, the methodology followed focuses on the in situ monitoring of a real installation of photovoltaic panels carried out in a dwelling located in the south of Spain due it is one of the climatic zones of the European continent with the least severity and at the same time with the greatest number of hours of sun exposure. In this way, in addition to knowing the contingencies, it can be deduced that if in these very favorable circumstances they occur, this means that they are likely to occur in any other less favorable. The results indicate that, although the dwelling is supplied, there have been certain contingencies in the supply and in the final cost. This leads to the conclusion that even in dwellings whose users consume little energy, due to their way of life and favorable climatic conditions, there are still some aspects of the technology that produce contingencies and that need to be resolved to make these installations technically and economically comparable to the supply of the electricity grid, in addition to being totally independent from any other source of energy that is not the photovoltaic itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vallêra AM, Centeno Brito M (2006) Meio século d História Fotovoltaica. Gaz Física 1:2

    Google Scholar 

  2. European Commission (2021) EU Energy prices | Energy. https://ec.europa.eu/energy/topics/markets-and-consumers/EU-energy-prices_en. Accessed 21 Dec 2021

  3. Weron R (2014) Electricity price forecasting: a review of the state-of-the-art with a look into the future. Int J Forecast 30:1030–1081

    Article  Google Scholar 

  4. Stefanović A, Bojić M, Gordić D (2014) Achieving net zero energy cost house from old thermally non-insulated house using photovoltaic panels. Energy Build 76:57–63

    Article  Google Scholar 

  5. Akikur RK, Saidur R, Ping HW, Ullah KR (2013) Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: a review. Renew Sustain Energy Rev 27:738–752

    Article  Google Scholar 

  6. Voss K, Hendel S, Stark M (2021) Solar Decathlon Europe—a review on the energy engineering of experimental solar powered houses. Energy Build 251:111336

    Google Scholar 

  7. ETSIT U MagicBox. http://magicbox.etsit.upm.es/. Accessed 23 Dec 2021

  8. Akinyele D, Belikov J, Levron Y (2017) Battery storage technologies for electrical applications: impact in stand-alone photovoltaic systems. Energies 10:1760

    Google Scholar 

  9. Gurung A, Qiao Q (2018) Solar charging batteries: advances, challenges, and opportunities. Joule 2:1217–1230

    Article  Google Scholar 

  10. Trahey L, Brushett FR, Balsara NP et al (2020) Energy storage emerging: a perspective from the joint center for energy storage research. Proc Natl Acad Sci U S A 117:12550

    Article  Google Scholar 

  11. Goldie-Scot L (2019) A behind the scenes take on lithium-ion battery prices | BloombergNEF. https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/. Accessed 21 Dec 2021

  12. Suri M, Betak J, Rosina K, Chrkavy D, Suriova N, Cebecauer T, Caltik M, Erdelyi B (2020) Global photovoltaic power potential by country. Global photovoltaic power potential by country. https://doi.org/10.1596/34102

  13. Supreme Court of Spain (2020) Judgment of nullity of sale due to impossibility of electricity supply

    Google Scholar 

  14. Ali W, Farooq H, Rehman AU, Awais Q, Jamil M, Noman A (2018) Design considerations of stand-alone solar photovoltaic systems. In: 2018 International conference on computing, electronic and electrical engineering (ICE Cube), pp 1–6

    Google Scholar 

  15. Voss K, Goetzberger A, Bopp G, Häberle A, Heinzel A, Lehmberg H (1996) The self-sufficient solar house in Freiburg—results of 3 years of operation. Sol Energy 58:17–23

    Article  Google Scholar 

  16. González Carballo A (2021) Diseño de una instalación de autoconsumo fotovoltaico para una vivienda unifamiliar

    Google Scholar 

  17. Hossain CA, Chowdhury N, Longo M, Yaïci W (2019) System and cost analysis of stand-alone solar home system applied to a developing country. Sustainability 11:1403

    Google Scholar 

  18. Melul Campos A (2021) Instalación solar fotovoltaica de autoconsumo para una vivienda rural con baterías

    Google Scholar 

  19. Sabater Alemany J (2016) Instalación de energía solar fotovoltaica aislada para una vivienda unifamiliar situada en el campo de 5KW

    Google Scholar 

  20. Marchante Pérez C (2015) Instalación solar fotovoltaica aislada para vivienda

    Google Scholar 

  21. Teva Caballero A (2021) Estudio de una instalación solar fotovoltaica aislada para una vivienda unifamiliar en Fortuna, 89

    Google Scholar 

  22. David A, Quiroga S (2012) Sistema de energía solar fotovoltaica para vivienda unifamiliar aislada, 103

    Google Scholar 

  23. Mayor Boronat M (2021) Estudio de una instalación solar fotovoltaica para una vivienda unifamiliar aislada

    Google Scholar 

  24. Hernández García E (2020) Estudio de una instalación solar fotovoltaica para una vivienda unifamiliar aislada, 72

    Google Scholar 

  25. Ministerio de la Vivienda (2006) Código Técnico de la Edificación (CTE) Documento Básico de Ahorro de Energía (DB-HE). In: BOE. https://www.codigotecnico.org/. Accessed 21 Dec 2021

  26. Bienvenido-Huertas D, Moyano J, Marín D, Fresco-Contreras R (2019) Review of in situ methods for assessing the thermal transmittance of walls. Renew Sustain Energy Rev 102:356–371

    Article  Google Scholar 

  27. Teni M, Krstić H, Kosiński P (2019) Review and comparison of current experimental approaches for in-situ measurements of building walls thermal transmittance. Energy Build 203:109417

    Google Scholar 

  28. Térmica PVGVL de C de C en la EÁ (2015) Catálogo de rehabilitación energética. Herramienta de ayuda para el técnico. Cercha Rev la Arquit Técnica 62–66

    Google Scholar 

  29. Red Eléctrica Española (REE) Publicaciones Red Eléctrica de España. https://www.ree.es/es. Accessed 23 Dec 2021

  30. PVSyst PVsyst – Logiciel Photovoltaïque. https://www.pvsyst.com/. Accessed 23 Dec 2021

  31. HelioEsfera Coordenadas y carta solar. https://www.helioesfera.com/coordenadas-y-carta-solar/. Accessed 23 Dec 2021

  32. Laboratory. USRM (2015) UO SRML: Sun chart program. http://solardat.uoregon.edu/SunChartProgram.php. Accessed 23 Dec 2021

  33. Meteotest Meteonorm. https://meteonorm.com/en/. Accessed 23 Dec 2021

  34. NASA Prediction of Worldwide Energy Resources. https://power.larc.nasa.gov/. Accessed 23 Dec 2021

  35. EU SCIENCE HUB TEC science and knowledge service Photovoltaic Geographical Information System (PVGIS) | EU Science Hub. https://ec.europa.eu/jrc/en/pvgis. Accessed 23 Dec 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Marín-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marín-García, D. (2022). Reality of Photovoltaic Technology Applied to Homes not Connected to the Grid Connected Using to Lithium Batteries Without Generator Set Support. In: Bienvenido-Huertas, D., Moyano-Campos, J. (eds) New Technologies in Building and Construction. Lecture Notes in Civil Engineering, vol 258. Springer, Singapore. https://doi.org/10.1007/978-981-19-1894-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1894-0_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1893-3

  • Online ISBN: 978-981-19-1894-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics