Skip to main content

Properties of Gypsum Mortars Dosed with LFS for Use in the Design of Prefabricated Blocks

  • Chapter
  • First Online:
New Technologies in Building and Construction

Abstract

The aim of the present investigation is to determine the suitability of gypsum mortars with mineral additions of ladle furnace slags (LFS) for use in the manufacture of prefabricated blocks. Different dosages of gypsum mortars are designed, and the corresponding tests for their characterization are performed, with the objective of determining their properties, in both the fresh and the hardened state, in accordance with applicable standards. A suitable dosage is then chosen, bearing in mind the optimization criterion on the use of waste in gypsum mixtures, seeking a balance between the quantity of slag that is used and the quality of its properties. Completing the study, a series of complementary tests are performed related to its behaviour in the presence of heat, fire, and both thermal and acoustic transmission. The results showed that the gypsum mortar designs presented similar properties to the conventional mortars and can be approved for use in construction, either as gypsum mortars or as raw material for the manufacture of prefabricated blocks, in compliance with the requirements established in current European standards.

https://www.ubu.es/ingenieria-de-edificacion-giie

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li X (2020) An urgent call for building green civilization: the natural environment is rapidly deteriorating. In: Green Civilization. Springer, Singapore. https://doi.org/10.1007/978-981-15-7812-0_1

  2. Ehrlich PR, Ehrlich AH (2013) Can a collapse of global civilization be avoided? Proc Royal Soc B: Biol Sci 280(1754):20122845. https://doi.org/10.1098/rspb.2012.2845

    Article  Google Scholar 

  3. Appannagari RR (2017) Environmental pollution causes and consequences: a study. North Asian Int Res J Soc Sci Humanities 3(8):151–161

    Google Scholar 

  4. Tainter JA (2008) Collapse, sustainability, and the environment: how authors choose to fail or succeed. Rev Anthropol 37(4):342–371. https://doi.org/10.1080/00938150802398677

    Article  Google Scholar 

  5. Brown LR (2013) Eco-economy: building an economy for the earth. Routledge. https://doi.org/10.4324/9781315071893

  6. Chen Z (2020) Work together to create a better future for the world’s ecological civilization. Chin J Urban Environ Stud 8(02):2075001. https://doi.org/10.1142/S2345748120750019

    Article  Google Scholar 

  7. Ursul A, Ursul T (2018) Environmental education for sustainable development. Future Human Image 9(1):116. https://doi.org/10.29202/fhi/9/12

  8. Basu S, Roy M, Pal P (2019) Corporate greening in a large developing economy: pollution prevention strategies. Environ Dev Sustain 21(4):1603–1633. https://doi.org/10.1007/s10668-018-0121-3

    Article  Google Scholar 

  9. Majeed A, Wang L, Zhang X, Kirikkaleli D (2021) Modeling the dynamic links among natural resources, economic globalization, disaggregated energy consumption, and environmental quality: fresh evidence from GCC economies. Resour Policy 73:102204. https://doi.org/10.1016/j.resourpol.2021.102204

    Article  Google Scholar 

  10. Puskás A, Corbu O, Szilágyi H, Moga LM (2014) Construction waste disposal practices: the recycling and recovery of waste. WIT Trans Ecol Environ 191:1313–1321. https://doi.org/10.2495/SC141102

    Article  Google Scholar 

  11. Sáez PV, Osmani M (2019) A diagnosis of construction and demolition waste generation and recovery practice in the European Union. J Clean Prod 241:118400. https://doi.org/10.1016/j.jclepro.2019.118400

    Article  Google Scholar 

  12. Pacheco-Torgal F (2014) Introduction to the environmental impact of construction and building materials. In: Eco-efficient construction and building materials. Woodhead Publishing, pp 1–10

    Google Scholar 

  13. Weglarz A, Gilewski P (2019) Innovative technologies in construction sector that meet criteria of sustainable development. In: IOP conference series: materials science and engineering, vol 661, no 1, IOP Publishing, p 012058. https://doi.org/10.1088/1757-899X/661/1/012058

  14. Rakhova M, Nikonorova S (2018) Problems of implementing innovative solutions in the construction sector of economy organizations. In: MATEC web of conferences, vol 251. EDP Sciences, p 05013. https://doi.org/10.1051/matecconf/201825105013

  15. Coelho A, De Brito J (2012) Influence of construction and demolition waste management on the environmental impact of buildings. Waste Manage 32(3):532–541. https://doi.org/10.1016/j.wasman.2011.11.011

    Article  Google Scholar 

  16. Ding Z, Wang Y, Zou PX (2016) An agent based environmental impact assessment of building demolition waste management: conventional versus green management. J Clean Prod 133:1136–1153. https://doi.org/10.1016/j.jclepro.2016.06.054

    Article  Google Scholar 

  17. Lawrence M (2015) Reducing the environmental impact of construction by using renewable materials. J Renew Materials 3(3):163–174. https://doi.org/10.7569/JRM.2015.634105

    Article  Google Scholar 

  18. Huang B, Gao X, Xu X, Song J, Geng Y, Sarkis J, Nakatani J (2020) A life cycle thinking framework to mitigate the environmental impact of building materials. One Earth 3(5):564–573. https://doi.org/10.1016/j.oneear.2020.10.010

    Article  Google Scholar 

  19. Costa C, Monteiro M, Rangel B, Alves FJL (2017) Industrial and natural waste transformed into raw material. Proc Inst Mech Eng, Part L: J Mater: Des Appl 231(1–2):247–256. https://doi.org/10.1590/1980-5373-MR-2020-0043

    Article  Google Scholar 

  20. Sassanelli C, Rosa P, Rocca R, Terzi S (2019) Circular economy performance assessment methods: a systematic literature review. J Clean Prod 229:440–453. https://doi.org/10.1016/j.jclepro.2019.05.019

    Article  Google Scholar 

  21. Oge M, Ozkan D, Celik MB, Gok MS, Karaoglanli AC (2019) An overview of utilization of blast furnace and steelmaking slag in various applications. Mater Today: Proc 11:516–525. https://doi.org/10.1016/j.matpr.2019.01.023

    Article  Google Scholar 

  22. Zhang X, Chen J, Jiang J, Li J, Tyagi RD, Surampalli RY (2020) The potential utilization of slag generated from iron-and steelmaking industries: a review. Environ Geochem Health 42(5):1321–1334. https://doi.org/10.1007/s10653-019-00419-y

    Article  Google Scholar 

  23. Thomas C, Rosales J, Polanco JA, Agrela F (2019) Steel slags. In: New trends in eco-efficient and recycled concrete. Woodhead Publishing, pp 169–190. https://doi.org/10.1016/B978-0-08-102480-5.00007-5

  24. Santamaría-Vicario I, Rodríguez A, Gutiérrez-González S, Calderón V (2015) Design of masonry mortars fabricated concurrently with different steel slag aggregates. Constr Build Mater 95:197–206. https://doi.org/10.1016/j.conbuildmat.2015.07.164

    Article  Google Scholar 

  25. Santamaría-Vicario I, Rodríguez A, Junco C, Gutiérrez-González S, Calderón V (2016) Durability behavior of steelmaking slag masonry mortars. Mater Des 97:307–315. https://doi.org/10.1016/j.matdes.2016.02.080

    Article  Google Scholar 

  26. Alonso A, Rodríguez A, Gadea J, Gutiérrez-González S, Calderón V (2019) Impact of plasterboard with ladle furnace slag on fire reaction and thermal behavior. Fire Technol 55(5):1733–1751. https://doi.org/10.1007/s10694-019-00828-6

    Article  Google Scholar 

  27. Rodríguez A, Gutiérrez-González S, Horgnies M, Calderón V (2013) Design and properties of plaster mortars manufactured with ladle furnace slag. Mater Des 1980–2015(52):987–994. https://doi.org/10.1016/j.matdes.2013.06.041

    Article  Google Scholar 

  28. Yang F (2015) Contemporary construction of ecological civilization: from ecological crisis to ecological governance. Chin J Urban Environ Stud 3(04):1550030. https://doi.org/10.1142/S234574811550030X

    Article  Google Scholar 

  29. Zhu T, Gao S (2014) Promoting circular development and recycling solid waste-In the view of ecological civilization construction. In: Advanced materials research, vol 878. Trans Tech Publications Ltd, pp 873–878. https://doi.org/10.4028/www.scientific.net/AMR.878.873

  30. Ghaffar SH, Burman M, Braimah N (2020) Pathways to circular construction: an integrated management of construction and demolition waste for resource recovery. J Clean Prod 244:118710. https://doi.org/10.1016/j.jclepro.2019.118710

    Article  Google Scholar 

  31. EN 13279-1: 2009 Gypsum Binders and Gypsum Plasters—Part 1: definitions and requirements. European Committee for Standardization Brussels, Belgium

    Google Scholar 

  32. EN 13279-2:2014. Gypsum binders and gypsum plasters—Part 2: test methods. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  33. UNE 102042: 2014 Gypsum plasters. Other test methods. Asociación Española de Normalización y Certificación, Madrid, España

    Google Scholar 

  34. EN 1015-19:1999 Methods of test for mortar for masonry—Part 19: determination of water vapour permeability of hardened rendering and plastering mortars. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  35. EN 1015-18:2003 Methods of test for mortar for masonry—Part 18: determination of water absorption coefficient due to capillary action of hardened mortar. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  36. EN ISO 1182:2011 Reaction to fire tests for products—Non-combustibility test. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  37. EN ISO 10534-2:2002 Acoustics—determination of sound absorption coefficient and impedance in impedances tubes—Part 2: transfer-function method. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  38. ASTM 1114-06 2019 Standard test method for steady-state thermal transmission properties by means of the thin-heater apparatus. American Society for Testing and Materials. Pennsylvania, USA

    Google Scholar 

  39. EN 772-1:2011+A1 Methods of test for masonry units—Part 1: determination of compressive strength. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  40. Ghazi K, Hugi E, Wullschleger L, Frank TH (2007) Gypsum board in fire-modeling and experimental validation. J Fire Sci 25(3):267–282. https://doi.org/10.1177/0734904107072883

    Article  Google Scholar 

  41. Yu QL, Brouwers HJ (2012) Thermal properties and microstructure of gypsum board and its dehydration products: a theoretical and experimental investigation. Fire Mater 36:575–589. https://doi.org/10.1002/fam.1117

    Article  Google Scholar 

  42. European Union. Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of the Member States relating to construction products. http://data.europa.eu/eli/dir/1989/106/2003-11-20

  43. ASTM C423-17 (2017) Standard test method for sound absorption and sound absorption coefficients by the reverberation room method. ASTM International, West Conshohocken, PA

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Consejería de Educación de la Junta de Castilla y León (Spain) for grants awarded to the Grupo de Investigación de Ingeniería de la Edificación de la Universidad de Burgos (GIIE), channelled through funding for the Proyecto de Investigación Autonómico GIR D02V.03 2018-2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Rodríguez-Saiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santamaría-Vicario, I., Alonso-Díez, Á., Horgnies, M., Rodríguez-Saiz, Á. (2022). Properties of Gypsum Mortars Dosed with LFS for Use in the Design of Prefabricated Blocks. In: Bienvenido-Huertas, D., Moyano-Campos, J. (eds) New Technologies in Building and Construction. Lecture Notes in Civil Engineering, vol 258. Springer, Singapore. https://doi.org/10.1007/978-981-19-1894-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1894-0_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1893-3

  • Online ISBN: 978-981-19-1894-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics