Skip to main content

Classification of Breast Cancer Using CNN and Its Variant

  • Conference paper
  • First Online:
Intelligent Communication Technologies and Virtual Mobile Networks

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 131))

Abstract

Deep learning comes under machine learning. It includes statistics and predictive modeling, which plays vital role in data science. It helps in acquiring and analyzing vast amount of data quick and easier. This technique is employed in image recognition tools and natural language processing. Carcinoma is one other frequently occurring cancer in women. Carcinoma can be identified in two variants: One is benign, and another one is malignant. Automatic detection in medical imaging has become the vital field in many medical diagnostic applications. Automated detection of breast cancer in magnetic resonance imaging (MRI), and mammography is very crucial as it provides information about breast lesions. Human inspection is the conventional method for defect detection in magnetic resonance images. This method is impractical for large amount of data. So, cancer detection methods are developed as it would save radiologist time and also the risk faced by woman. Various machine learning algorithms are used to identify breast cancer. Deep learning models have been widely used in the classification of medical images. To improvise the accuracy in the model various, deep learning approaches are to be used to detect the breast cancer. The proposed approach classifies the breast cancer not just as benign or malignant, but it will classify the subclasses of breast cancer. They are Benign, Lobular Carcinoma, Mucinous Carcinoma, Ductal Carcinoma, and Papillary Carcinoma. To classify the subclasses of tumor, we use DenseNet Architecture. Image preprocessing is done using histogram equalization method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiu HJ, Li THS, Kuo PH (2020) Breast cancer-detection system using PCA, multilayer perceptron, transfer learning, and support vector machine. IEEE Access 8:204309–204324. https://doi.org/10.1109/ACCESS.2020.3036912

    Article  Google Scholar 

  2. Naveen, Sharma RK, Ramachandran Nair A (2019) Efficient breast cancer prediction using ensemble machine learning models. In: 2019 4th International conference on recent trends on electronics, information, communication & technology (RTEICT), Bangalore, India, pp 100–104. https://doi.org/10.1109/RTEICT46194.2019.9016968

  3. Sengar PP, Gaikwad MJ, Nagdive AS (2020) Comparative study of machine learning algorithms for breast cancer prediction. In: 2020 Third international conference on smart systems and inventive technology (ICSSIT), Tirunelveli, India, pp 796–801. https://doi.org/10.1109/ICSSIT48917.2020.9214267

  4. Bayrak EA, Kirci P, Ensari T (2019) Comparison of machine learning methods for breast cancer diagnosis. In: 2019 Scientific meeting on electrical-electronics & biomedical engineering and computer science (EBBT), Istanbul, Turkey, pp 1–3. https://doi.org/10.1109/EBBT.2019.8741990

  5. Mishra V, Singh Y, Kumar Rath S (2019) Breast cancer detection from thermograms using feature extraction and machine learning techniques. In: 2019 IEEE 5th International conference for convergence in technology (I2CT), Bombay, India, pp 1–5. https://doi.org/10.1109/I2CT45611.2019.9033713

  6. Amrane M, Oukid S, Gagaoua I, Ensari T (2018)Breast cancer classification using machine learning. In: 2018 Electric electronics, computer science, biomedical engineerings’ meeting (EBBT), Istanbul, Turkey, pp 1–4. https://doi.org/10.1109/EBBT.2018.8391453

  7. Nemissi M, Salah H, Seridi H (2018) Breast cancer diagnosis using an enhanced extreme learning machine based-neural network. In: 2018 International conference on signal, image, vision and their applications (SIVA), Guelma, Algeria, pp 1–4. https://doi.org/10.1109/SIVA.2018.8661149

  8. Sharma S, Aggarwal A, Choudhury T (2018) Breast cancer detection using machine learning algorithms. In: 2018 International conference on computational techniques, electronics and mechanical systems (CTEMS), Belgaum, India, pp 114–118. https://doi.org/10.1109/CTEMS.2018.8769187

  9. Pooja Bharat N, Reddy RA (2018) Using machine learning algorithms for breast cancer risk prediction and diagnosis. In: 2018 3rd International conference on circuits, control, communication and computing (I4C), Bangalore, India., pp 1–4. https://doi.org/10.1109/CIMCA.2018.8739696

  10. Sathesh A (2020) Adaptive shape based interactive approach to segmentation for nodule in Lung CT scans. J Soft Comput Paradigm 2(4):216–225

    Article  Google Scholar 

  11. Samuel Manoharan J (2021) Study of variants of extreme learning machine (ELM) brands and its performance measure on classification algorithm. J Soft Comput Paradigm (JSCP) 3(2):83–95

    Google Scholar 

  12. Balasubramaniam V (2021) Artificial intelligence algorithm with SVM classification using dermascopic images for Melanoma diagnosis. J Artif Intell Capsule Netw 3(1):34–42

    Article  Google Scholar 

  13. Manoharan S (2019) Study on Hermitian graph wavelets in feature detection. J Soft Comput Paradigm (JSCP) 1(01):24–32

    Article  Google Scholar 

  14. Huang G, Liu Z, van der Maaten L (2018) Densely connected convolutional networks. Last accessed 15 Apr 2021

    Google Scholar 

  15. https://www.kaggle.com/ambarish/breakhis. Last accessed 15 Apr 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Selvaraj, S., Deepa, D., Ramya, S., Priya, R., Ramya, C., Ramya, P. (2023). Classification of Breast Cancer Using CNN and Its Variant. In: Rajakumar, G., Du, KL., Vuppalapati, C., Beligiannis, G.N. (eds) Intelligent Communication Technologies and Virtual Mobile Networks. Lecture Notes on Data Engineering and Communications Technologies, vol 131. Springer, Singapore. https://doi.org/10.1007/978-981-19-1844-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1844-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1843-8

  • Online ISBN: 978-981-19-1844-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics