Skip to main content

Carbon Composite Catalysts for Oxygen Reduction Reactions

  • Chapter
  • First Online:
Carbon Composite Catalysts

Part of the book series: Composites Science and Technology ((CST))

  • 292 Accesses

Abstract

There is a growing interest for the development of various kind of catalysts to overcome the sluggish kinetics reaction of ORR at the cathode. Therefore, a lot of research have been done to search for promising catalysts that can speed up the ORR kinetics, hence enhance the performance. Carbon-based materials such as carbon black, carbon nanotube, and graphene derivatives hold the greatest promise as potentially ideal alternatives for ORR electrocatalyst owing to their abundance, low-cost, high surface area, and outstanding electronic conductivity. This chapter mainly focuses on research interest and activity on carbon composite catalysts for ORR, including hybridization with platinum group metal (PGM) and non-PGM. The role of carbon-based materials as support in the composite has also been discussed. Additionally, heteroatom-doping carbon composite catalyst was highlighted with an aim to enhance the catalytic performance by altering the electronic properties of carbon. To assist readers, we first provide an overview of the following background information of ORR, the reaction pathway, and the role of electrocatalyst in ORR, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma R, Lin G, Zhou Y et al (2019) A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. NPJ Comput Mater 5. https://doi.org/10.1038/s41524-019-0210-3

  2. Wu G, Santandreu A, Kellogg W et al (2016) Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition. Nano Energy 29:83–110. https://doi.org/10.1016/j.nanoen.2015.12.032

    Article  CAS  Google Scholar 

  3. Song C, Zhang J (2008) Electrocatalytic oxygen reduction reaction. In: PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications, pp 1–1137

    Google Scholar 

  4. Wang ZL, Xu D, Xu JJ, Zhang XB (2014) Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 43:7746–7786. https://doi.org/10.1039/c3cs60248f

    Article  CAS  Google Scholar 

  5. Cao R, Lee JS, Liu M, Cho J (2012) Recent progress in non-precious catalysts for metal-air batteries. Adv Energy Mater 2:816–829. https://doi.org/10.1002/aenm.201200013

    Article  CAS  Google Scholar 

  6. Lam E, Luong JHT (2014) Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal 4:3393–3410. https://doi.org/10.1021/cs5008393

    Article  CAS  Google Scholar 

  7. Molina-García MA, Rees NV (2016) Effect of catalyst carbon supports on the oxygen reduction reaction in alkaline media: a comparative study. RSC Adv 6:94669–94681. https://doi.org/10.1039/c6ra18894j

    Article  Google Scholar 

  8. Pérez-Rodríguez S, Pastor E, Lázaro MJ (2018) Electrochemical behavior of the carbon black Vulcan XC-72R: influence of the surface chemistry. Int J Hydrogen Energy 43:7911–7922. https://doi.org/10.1016/j.ijhydene.2018.03.040

    Article  CAS  Google Scholar 

  9. Auer E, Freund A, Pietsch J, Tacke T (1998) Carbons as supports for industrial precious metal catalysts. Appl Catal A Gen 173:259–271. https://doi.org/10.1016/S0926-860X(98)00184-7

    Article  CAS  Google Scholar 

  10. Noked M, Soffer A, Arubach D (2011) The electrochemistry of activated carbonaceous materials: past, present, and future. J Solid State Electrochem 15:1563–1578. https://doi.org/10.1007/s10008-011-1411-y

    Article  CAS  Google Scholar 

  11. Fic K, Frackowiak E, Béguin F (2012) Unusual energy enhancement in carbon-based electrochemical capacitors. J Mater Chem 22:24213–24223. https://doi.org/10.1039/c2jm35711a

    Article  CAS  Google Scholar 

  12. Tang S, Sun G, Qi J et al (2010) Review of new carbon materials as catalyst supports in direct alcohol fuel cells. Chinese J Catal 31:12–17. https://doi.org/10.1016/s1872-2067(09)60034-6

    Article  CAS  Google Scholar 

  13. Asikin-Mijan N, Lee HV, Abdulkareem-Alsultan G et al (2017) Production of green diesel via cleaner catalytic deoxygenation of Jatropha curcas oil. J Clean Prod 167:1048–1059. https://doi.org/10.1016/j.jclepro.2016.10.023

    Article  CAS  Google Scholar 

  14. Hersam MC (2013) Chem Soc Rev, 2824–2860. https://doi.org/10.1039/c2cs35335k

  15. Yang K, Zaffran J, Yang B (2020) Fast prediction of oxygen reduction reaction activity on carbon nanotubes with a localized geometric descriptor. Phys Chem Chem Phys, 890–895. https://doi.org/10.1039/c9cp04885e

  16. Borghei M, Lehtonen J, Liu L, Rojas OJ (2017) Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv Mater, 1703691:1–27.https://doi.org/10.1002/adma.201703691

  17. Rey-Raap N, Enterría M, Martins JI et al (2019) Influence of multiwalled carbon nanotubes as additives in biomass-derived carbons for supercapacitor applications. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.8b19246

    Article  Google Scholar 

  18. Ratso S, Käärik M, Kook M et al (2019) High performance catalysts based on Fe/N co-doped carbide-derived carbon and carbon nanotube composites for oxygen reduction reaction in acid media. Int J Hydrogen Energy 44:12636–12648. https://doi.org/10.1016/j.ijhydene.2018.11.080

    Article  CAS  Google Scholar 

  19. Morais RG, Rey-Raap N, Costa RS et al (2020) Hydrothermal carbon/carbon nanotube composites as electrocatalysts for the oxygen reduction reaction. J Compos Sci 4:6–8. https://doi.org/10.3390/jcs4010020

    Article  CAS  Google Scholar 

  20. Bogdanovskaya V, Vernigor I, Radina M et al (2020) Carbon nanotube modified by (O, n, p) atoms as effective catalysts for electroreduction of oxygen in alkaline media. Catalysts 10:1–10. https://doi.org/10.3390/catal10080892

    Article  CAS  Google Scholar 

  21. Sang Y, Fu A, Li H et al (2016) Experimental and theoretical studies on the effect of functional groups on carbon nanotubes to its oxygen reduction reaction activity. Colloids Surfaces A Physicochem Eng Asp 506:476–484. https://doi.org/10.1016/j.colsurfa.2016.07.008

    Article  CAS  Google Scholar 

  22. Wang X, Ouyang C, Dou S et al (2015) Oxidized carbon nanotubes as an efficient metal-free electrocatalyst for the oxygen reduction reaction. RSC Adv 5:41901–41904. https://doi.org/10.1039/c5ra05172j

    Article  CAS  Google Scholar 

  23. Maity S, Samanta M, Roychowdhury T et al (2020) Polypyrrole decorated amorphous CNT: a potential ORR electrocatalyst in alkaline medium. In: 3RD international conference on condensed matter and applied physics (ICC-2019), p 080039

    Google Scholar 

  24. Chen S, Huang Q, Yang W et al (2018) Pt–CoN supported on TiN-modified carbon nanotubes (Pt–CoN/TiN–CNT) as efficient oxygen reduction reaction catalysts in acidic medium. Int J Hydrogen Energy 43:14337–14346. https://doi.org/10.1016/j.ijhydene.2018.06.003

    Article  CAS  Google Scholar 

  25. Aleksandrzak M, Mijowska E (2015) Graphene and its derivatives for energy storage

    Google Scholar 

  26. Alemour B, Yaacob MH, Lim HN, Hassan MR (2018) Review of electrical properties of graphene conductive composites. Int J Nanoelectron Mater 11:371–398

    Google Scholar 

  27. Bin WJ, Ren Z, Hou Y et al (2020) A review of graphene synthesis at low temperatures by CVD methods. Xinxing Tan Cailiao/New Carbon Mater 35:193–208. https://doi.org/10.1016/S1872-5805(20)60484-X

    Article  Google Scholar 

  28. Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon N Y 50:3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  29. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. https://doi.org/10.1039/b917103g

    Article  CAS  Google Scholar 

  30. Shahgaldi S, Hamelin J (2015) Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon N Y 94:705–728. https://doi.org/10.1016/j.carbon.2015.07.055

    Article  CAS  Google Scholar 

  31. Liu X, Dai L (2016) Carbon-based metal-free catalysts. Nat Rev Mater 1.https://doi.org/10.1038/natrevmats.2016.64

  32. Hu C, Dai L (2019) Doping of carbon materials for metal-free electrocatalysis. Adv Mater 31:1–17. https://doi.org/10.1002/adma.201804672

    Article  CAS  Google Scholar 

  33. Daems N, Sheng X, Vankelecom IFJ, Pescarmona PP (2014) Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A 2:4085–4110. https://doi.org/10.1039/c3ta14043a

    Article  CAS  Google Scholar 

  34. Gong K, Du F, Xia Z, et al (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science (80- ) 323:760–764. https://doi.org/10.1126/science.1168049

  35. Zhao S, Wang D, Amal R, Dai L (2019) Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv Mater, 1801526:1–22. https://doi.org/10.1002/adma.201801526

  36. Yang L, Shui J, Du L et al (2019) Carbon-based metal-free ORR electrocatalysts for fuel cells. Past, Present, and Future 1804799:1–20. https://doi.org/10.1002/adma.201804799

    Article  CAS  Google Scholar 

  37. Li J, Hou P, Liu C (2017) Heteroatom-doped carbon nanotube and graphene-based electrocatalysts for oxygen reduction reaction. Small, 1702002:1–13. https://doi.org/10.1002/smll.201702002

  38. Strelko VV, Kuts VS, Thrower PA (2000) On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions. Carbon N Y 38:1499–1503. https://doi.org/10.1016/S0008-6223(00)00121-4

    Article  CAS  Google Scholar 

  39. Guo MQ, Huang JQ, Kong XY et al (2016) Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries. Xinxing Tan Cailiao/New Carbon Mater 31:352–362. https://doi.org/10.1016/S1872-5805(16)60019-7

    Article  CAS  Google Scholar 

  40. Bo X, Guo L (2013) Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution. Phys Chem Chem Phys 15:2459–2465. https://doi.org/10.1039/c2cp43541a

    Article  CAS  Google Scholar 

  41. Yang L, Jiang S, Zhao Y et al (2011) Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew Chemie 123:7270–7273. https://doi.org/10.1002/ange.201101287

    Article  Google Scholar 

  42. Montiel Macias E, Valenzuela-Muñiz AM, Alonso-Núñez G et al (2020) Sulfur doped carbon nanohorns towards oxygen reduction reaction. Diam Relat Mater 103:107671. https://doi.org/10.1016/j.diamond.2019.107671

    Article  CAS  Google Scholar 

  43. Xu D, Duo WuW (2019) The role of sulfur-related species in oxygen reduction reactions. Chalcogen Chem. https://doi.org/10.5772/intechopen.78647

    Article  Google Scholar 

  44. Zhou J, Lian J, Hou L, et al (2015) Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat Commun 6. https://doi.org/10.1038/ncomms9503

  45. Panomsuwan G, Saito N, Ishizaki T (2015) Simple one-step synthesis of fluorine-doped carbon nanoparticles as potential alternative metal-free electrocatalysts for oxygen reduction reaction. J Mater Chem A 3:9972-9981A. https://doi.org/10.1039/c5ta00244c

    Article  CAS  Google Scholar 

  46. Chang Y, Chen J, Jia J et al (2021) The fluorine-doped and defects engineered carbon nanosheets as advanced electrocatalysts for oxygen electroreduction. Appl Catal B Environ 284:119721. https://doi.org/10.1016/j.apcatb.2020.119721

    Article  CAS  Google Scholar 

  47. Ramli ZAC, Kamarudin SK (2018) Platinum-based catalysts on various carbon supports and conducting polymers for direct methanol fuel cell applications: a review. Nanoscale Res Lett 13.https://doi.org/10.1186/s11671-018-2799-4

  48. Mirabile Gattia D, Antisari MV, Giorgi L et al (2009) Study of different nanostructured carbon supports for fuel cell catalysts. J Power Sources 194:243–251. https://doi.org/10.1016/j.jpowsour.2009.04.058

    Article  CAS  Google Scholar 

  49. Wang G, Sun G, Wang Q et al (2010) Effect of carbon black additive in Pt black cathode catalyst layer on direct methanol fuel cell performance. Int J Hydrogen Energy 35:11245–11253. https://doi.org/10.1016/j.ijhydene.2010.07.045

    Article  CAS  Google Scholar 

  50. Karousos DS, Desdenakis KI, Sakkas PM et al (2017) Sonoelectrochemical one-pot synthesis of Pt–carbon black nanocomposite PEMFC electrocatalyst. Ultrason Sonochem 35:591–597. https://doi.org/10.1016/j.ultsonch.2016.05.023

    Article  CAS  Google Scholar 

  51. Sattler ML, Ross PN (1986) The surface structure of Pt crystallites supported on carbon black. Ultramicroscopy 20:21–28. https://doi.org/10.1016/0304-3991(86)90163-4

    Article  CAS  Google Scholar 

  52. Jeng KT, Chien CC, Hsu NY et al (2006) Performance of direct methanol fuel cell using carbon nanotube-supported Pt-Ru anode catalyst with controlled composition. J Power Sources 160:97–104. https://doi.org/10.1016/j.jpowsour.2006.01.057

    Article  CAS  Google Scholar 

  53. Show Y, Hirai A, Almowarai A, Ueno Y (2015) Platinum catalyst formed on carbon nanotube by the in-liquid plasma method for fuel cell. Thin Solid Films 596:198–200. https://doi.org/10.1016/j.tsf.2015.08.053

    Article  CAS  Google Scholar 

  54. Matsuda N, Nakashima T, Kato T, Shiroishi H (2014) Synthesis of multiwall carbon nanotube-supported platinum catalysts by solution plasma processing for oxygen reduction in polymer electrolyte fuel cells. Electrochim Acta 146:73–78. https://doi.org/10.1016/j.electacta.2014.07.127

    Article  CAS  Google Scholar 

  55. Jha N, Leela Mohana Reddy A, Shaijumon MM et al (2008) Pt-Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell. Int J Hydrogen Energy 33:427–433. https://doi.org/10.1016/j.ijhydene.2007.07.064

    Article  CAS  Google Scholar 

  56. Wang X, Zhang J, Zhu H (2011) Pt-Au/CNT@TiO2 as a high-performance anode catalyst for direct methanol fuel cells. Cuihua Xuebao/Chinese J Catal 32:74–79. https://doi.org/10.1016/s1872-2067(10)60163-5

    Article  Google Scholar 

  57. Wu G, Xu BQ (2007) Carbon nanotube supported Pt electrodes for methanol oxidation: a comparison between multi- and single-walled carbon nanotubes. J Power Sources 174:148–158. https://doi.org/10.1016/j.jpowsour.2007.08.024

    Article  CAS  Google Scholar 

  58. Ma J, Wang L, Mu X, Cao Y (2015) Enhanced electrocatalytic activity of Pt nanoparticles supported on functionalized graphene for methanol oxidation and oxygen reduction. J Colloid Interface Sci 457:102–107. https://doi.org/10.1016/j.jcis.2015.06.031

    Article  CAS  Google Scholar 

  59. Zhang X, Yuan W, Duan J et al (2015) Graphene nanosheets modified by nitrogen-doped carbon layer to support Pt nanoparticles for direct methanol fuel cell. Microelectron Eng 141:234–237. https://doi.org/10.1016/j.mee.2015.03.061

    Article  CAS  Google Scholar 

  60. Qiu JD, Wang GC, Liang RP et al (2011) Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. J Phys Chem C 115:15639–15645. https://doi.org/10.1021/jp200580u

    Article  CAS  Google Scholar 

  61. Zhang M, Li Y, Yan Z et al (2015) Improved catalytic activity of cobalt core-platinum shell nanoparticles supported on surface functionalized graphene for methanol electro-oxidation. Electrochim Acta 158:81–88. https://doi.org/10.1016/j.electacta.2015.01.160

    Article  CAS  Google Scholar 

  62. Félix-Navarro RM, Beltrán-Gastélum M, Reynoso-Soto EA et al (2016) Bimetallic Pt-Au nanoparticles supported on multi-wall carbon nanotubes as electrocatalysts for oxygen reduction. Renew Energy 87:31–41. https://doi.org/10.1016/j.renene.2015.09.060

    Article  CAS  Google Scholar 

  63. Sharma S, Ganguly A, Papakonstantinou P et al (2010) Rapid microwave synthesis of CO tolerant Reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol. J Phys Chem C 114:19459–19466. https://doi.org/10.1021/jp107872z

    Article  CAS  Google Scholar 

  64. Wang F, Xu L, Yang J et al (2017) Enhanced catalytic performance of Ir catalysts supported on ceria-based solid solutions for methane dry reforming reaction. Catal Today 281:295–303. https://doi.org/10.1016/j.cattod.2016.03.055

    Article  CAS  Google Scholar 

  65. Tang Z, Wu W, Wang K (2018) Oxygen reduction reaction catalyzed by noble metal clusters. Catalysts 8.https://doi.org/10.3390/catal8020065

  66. Chen W, Chen S (2009) Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. Angew Chemie 121:4450–4453. https://doi.org/10.1002/ange.200901185

    Article  Google Scholar 

  67. Matseke MS, Munonde TS, Mallick K, Zheng H (2019) Pd/PANI/C nanocomposites as electrocatalysts for oxygen reduction reaction in alkaline media. Electrocatalysis 10:436–444. https://doi.org/10.1007/s12678-019-00536-3

    Article  CAS  Google Scholar 

  68. Bao Z, Zhou H, Song X et al (2019) Enhanced oxygen reduction activity on carbon supported Pd nanoparticles via SiO2. ChemCatChem 11:1278–1285. https://doi.org/10.1002/cctc.201801511

    Article  CAS  Google Scholar 

  69. Xiao W, Liutheviciene Cordeiro MA, Gong M et al (2017) Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size. J Mater Chem A 5:9867–9872. https://doi.org/10.1039/c7ta02479g

    Article  CAS  Google Scholar 

  70. An LL, Chen Y, Shi J et al (2018) Oxygen reduction activity and stability of composite Pdx/Co-nanofilms/C electrocatalysts in acid and alkaline media. Front Chem 6:1–10. https://doi.org/10.3389/fchem.2018.00596

    Article  CAS  Google Scholar 

  71. Wang M, Qin X, Jiang K et al (2017) Electrocatalytic activities of oxygen reduction reaction on Pd/C and Pd-B/C catalysts. J Phys Chem C 121:3416–3423. https://doi.org/10.1021/acs.jpcc.6b12026

    Article  CAS  Google Scholar 

  72. Lin C, Wu G, Li H et al (2017) Rh nanoparticles supported on ultrathin carbon nanosheets for high-performance oxygen reduction reaction and catalytic hydrogenation. Nanoscale 9:1834–1839. https://doi.org/10.1039/c6nr09739a

    Article  CAS  Google Scholar 

  73. Yuan L, Yan Z, Jiang L et al (2016) Gold-iridium bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. J Energy Chem 25:805–810. https://doi.org/10.1016/j.jechem.2016.04.013

    Article  Google Scholar 

  74. Bonakdarpour A, Delacote C, Yang R et al (2008) Loading of Se/Ru/C electrocatalyst on a rotating ring-disk electrode and the loading impact on a H2O2 release during oxygen reduction reaction. Electrochem commun 10:611–615. https://doi.org/10.1016/j.elecom.2008.02.004

    Article  CAS  Google Scholar 

  75. Shao Y, Cheng Y, Duan W et al (2015) Nanostructured electrocatalysts for PEM fuel cells and redox flow batteries: a selected review. ACS Catal 5:7288–7298. https://doi.org/10.1021/acscatal.5b01737

    Article  CAS  Google Scholar 

  76. Shui J, Wang M, Du F, Dai L (2015) N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci Adv 1:1–8. https://doi.org/10.1126/sciadv.1400129

    Article  CAS  Google Scholar 

  77. Chen L, Xu X, Yang W, Jia J (2020) Recent advances in carbon-based electrocatalysts for oxygen reduction reaction. Chinese Chem Lett 31:626–634. https://doi.org/10.1016/j.cclet.2019.08.008

    Article  CAS  Google Scholar 

  78. Li W, Wang D, Zhang Y et al (2020) Defect engineering for fuel-cell electrocatalysts. Adv Mater 32:1–20. https://doi.org/10.1002/adma.201907879

    Article  CAS  Google Scholar 

  79. Wang Y, Liang Z, Zheng H, Cao R (2020) Recent progress on defect-rich transition metal oxides and their energy-related applications. Chem Asian J 15:3717–3736. https://doi.org/10.1002/asia.202000925

    Article  CAS  Google Scholar 

  80. Toh RJ, Sofer Z, Pumera M (2015) Transition metal oxides for the oxygen reduction reaction: influence of the oxidation states of the metal and its position on the periodic table. ChemPhysChem 16:3527–3531. https://doi.org/10.1002/cphc.201500483

    Article  CAS  Google Scholar 

  81. Qian C, Guo X, Zhang W et al (2019) Co3O4 nanoparticles on porous bio-carbon substrate as catalyst for oxygen reduction reaction. Microporous Mesoporous Mater 277:45–51. https://doi.org/10.1016/j.micromeso.2018.10.020

    Article  CAS  Google Scholar 

  82. Ahmed MS, Choi B, Kim YB (2018) Development of highly active bifunctional electrocatalyst using coon carbon nanotubes for oxygen reduction and oxygen evolution. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-20974-1

    Article  CAS  Google Scholar 

  83. Goswami C, Hazarika KK, Bharali P (2018) Transition metal oxide nanocatalysts for oxygen reduction reaction. Mater Sci Energy Technol 1:117–128. https://doi.org/10.1016/j.mset.2018.06.005

    Article  Google Scholar 

  84. Zhao A, Masa J, Xia W et al (2014) Spinel Mn-Co oxide in N-doped carbon nanotubes as a bifunctional electrocatalyst synthesized by oxidative cutting. J Am Chem Soc 136:7551–7554. https://doi.org/10.1021/ja502532y

    Article  CAS  Google Scholar 

  85. Hazarika KK, Goswami C, Saikia H et al (2018) Cubic Mn2O3 nanoparticles on carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Mol Catal 451:153–160. https://doi.org/10.1016/j.mcat.2017.12.012

    Article  CAS  Google Scholar 

  86. Wu D, Guo X, Sun H, Navrotsky A (2016) Interplay of confinement and surface energetics in the interaction of water with a metal-organic framework. J Phys Chem C 120:7562–7567. https://doi.org/10.1021/acs.jpcc.5b12239

    Article  CAS  Google Scholar 

  87. Decoste JB, Peterson GW, Schindler BJ et al (2013) The effect of water adsorption on the structure of the carboxylate containing metal-organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. J Mater Chem A 1:11922–11932. https://doi.org/10.1039/c3ta12497e

    Article  CAS  Google Scholar 

  88. Chen L, Zhang X, Cheng X et al (2020) The function of metal-organic frameworks in the application of MOF-based composites. Nanoscale Adv 2:2628–2647. https://doi.org/10.1039/d0na00184h

    Article  CAS  Google Scholar 

  89. Meng J, Liu X, Niu C et al (2020) Advances in metal-organic framework coatings: versatile synthesis and broad applications. Chem Soc Rev 49:3142–3186. https://doi.org/10.1039/c9cs00806c

    Article  CAS  Google Scholar 

  90. Xu X, Liu J, Liu J et al (2018) A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv Funct Mater 28:1–12. https://doi.org/10.1002/adfm.201707573

    Article  CAS  Google Scholar 

  91. Ma X, Zhao X, Sun J et al (2016) A versatile strategy to fabricate MOFs/carbon material integrations and their derivatives for enhanced electrocatalysis. RSC Adv 6:7728–7735. https://doi.org/10.1039/c5ra21998a

    Article  CAS  Google Scholar 

  92. Gadipelli S, Zhao T, Shevlin SA, Guo Z (2016) Switching effective oxygen reduction and evolution performance by controlled graphitization of a cobalt-nitrogen-carbon framework system. Energy Environ Sci 9:1661–1667. https://doi.org/10.1039/c6ee00551a

    Article  CAS  Google Scholar 

  93. Fan T, Yin F, Wang H et al (2017) A metal–organic-framework/carbon composite with enhanced bifunctional electrocatalytic activities towards oxygen reduction/evolution reactions. Int J Hydrogen Energy 42:17376–17385. https://doi.org/10.1016/j.ijhydene.2017.02.063

    Article  CAS  Google Scholar 

  94. Jahan M, Liu Z, Loh KP (2013) A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv Funct Mater 23:5363–5372. https://doi.org/10.1002/adfm.201300510

    Article  CAS  Google Scholar 

  95. Chen R, Yan J, Liu Y, Li J (2015) Three-dimensional nitrogen-doped graphene/MnO nanoparticle hybrids as a high-performance catalyst for oxygen reduction reaction. J Phys Chem C 119:8032–8037. https://doi.org/10.1021/acs.jpcc.5b00306

    Article  CAS  Google Scholar 

  96. Panomsuwan G, Saito N, Ishizaki T (2016) Nitrogen-doped carbon nanoparticle-carbon nanofiber composite as an efficient metal-free cathode catalyst for oxygen reduction reaction. ACS Appl Mater Interfaces 8:6962–6971. https://doi.org/10.1021/acsami.5b10493

    Article  CAS  Google Scholar 

  97. Xiong C, Yang Q, Dang W et al (2020) Fabrication of eco-friendly carbon microtubes @ nitrogen-doped reduced graphene oxide hybrid as an excellent carbonaceous scaffold to load MnO2 nanowall (PANI nanorod) as bifunctional material for high-performance supercapacitor and oxygen reduction react. J Power Sources 447:227387. https://doi.org/10.1016/j.jpowsour.2019.227387

    Article  CAS  Google Scholar 

  98. Oh SM, Patil SB, Jin X, Hwang SJ (2018) Recent applications of 2D inorganic nanosheets for emerging energy storage system. Chem Eur J 24:4757–4773. https://doi.org/10.1002/chem.201704284

    Article  CAS  Google Scholar 

  99. Mohd Sidek HB, Jo YK, Kim IY, Hwang SJ (2016) Stabilization of layered double oxide in hybrid matrix of graphene and layered metal oxide nanosheets: an effective way to explore efficient CO2 adsorbent. J Phys Chem C 120:23421–23429. https://doi.org/10.1021/acs.jpcc.6b08065

    Article  CAS  Google Scholar 

  100. Xing X, Liu R, Anjass M et al (2020) Bimetallic manganese-vanadium functionalized N, S-doped carbon nanotubes as efficient oxygen evolution and oxygen reduction electrocatalysts. Appl Catal B Environ 277:119195. https://doi.org/10.1016/j.apcatb.2020.119195

    Article  CAS  Google Scholar 

  101. Lu X, Zhao C (2013) Highly efficient and robust oxygen evolution catalysts achieved by anchoring nanocrystalline cobalt oxides onto mildly oxidized multiwalled carbon nanotubes. J Mater Chem A 1:12053–12059. https://doi.org/10.1039/c3ta12912h

    Article  CAS  Google Scholar 

  102. Gao T, Jin Z, Zhang Y et al (2017) Coupling cobalt-iron bimetallic nitrides and N-doped multi-walled carbon nanotubes as high-performance bifunctional catalysts for oxygen evolution and reduction reaction. Electrochim Acta 258:51–60. https://doi.org/10.1016/j.electacta.2017.07.172

    Article  CAS  Google Scholar 

  103. Wang D, Zhang K, Liao L et al (2019) Synthesis of nitrogen and sulfur co-doped sisal fiber carbon and its electrochemical performance in lithium-ion battery. Int J Electrochem Sci 14:102–113. https://doi.org/10.20964/2019.01.53

  104. Su Y, Zhang Y, Zhuang X et al (2013) Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon N Y 62:296–301. https://doi.org/10.1016/j.carbon.2013.05.067

    Article  CAS  Google Scholar 

  105. Tavakol H, Keshavarzipour F (2016) A sulfur doped carbon nanotube as a potential catalyst for the oxygen reduction reaction. RSC Adv 6:63084–63090. https://doi.org/10.1039/c6ra11447d

    Article  CAS  Google Scholar 

  106. Yang Z, Yao Z, Li G et al (2012) Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6:205–211

    Article  CAS  Google Scholar 

  107. Wang L, Dong H, Guo Z et al (2016) Potential application of novel boron-doped graphene nanoribbon as oxygen reduction reaction catalyst. J Phys Chem C 120:17427–17434. https://doi.org/10.1021/acs.jpcc.6b04639

    Article  CAS  Google Scholar 

  108. Qiu Y, Xin L, Jia F et al (2016) Three-dimensional phosphorus-doped graphitic-C3N4 self-assembly with NH2-functionalized carbon composite materials for enhanced oxygen reduction reaction. Langmuir 32:12569–12578. https://doi.org/10.1021/acs.langmuir.6b02498

    Article  CAS  Google Scholar 

  109. Wang H, Kong A (2014) Mesoporous fluorine-doped carbon as efficient cathode material for oxygen reduction reaction. Mater Lett 136:384–387. https://doi.org/10.1016/j.matlet.2014.08.081

    Article  CAS  Google Scholar 

  110. Guo J, Zhang J, Zhao H et al (2018) Fluorine-doped graphene with an outstanding electrocatalytic performance for efficient oxygen reduction reaction in alkaline solution. R Soc Open Sci 5.https://doi.org/10.1098/rsos.180925

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haslinda Mohd Sidek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sidek, H.M., Asikin-Mijan, N., Shamsuddin, M.R., Taufiq-Yap, Y.H. (2022). Carbon Composite Catalysts for Oxygen Reduction Reactions. In: Jawaid, M., Khan, A. (eds) Carbon Composite Catalysts. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-19-1750-9_4

Download citation

Publish with us

Policies and ethics