Skip to main content

A Sparse-Dense HOG Window Sampling Technique for Fast Pedestrian Detection in Aerial Images

  • Conference paper
  • First Online:
Innovations in Electrical and Electronic Engineering (ICEEE 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 893))

Included in the following conference series:

Abstract

Pedestrian detection from Unmanned Aerial Vehicle (UAV) has been an important part of surveillance systems. A Two-stage (Sparse-Dense) sliding window technique has been proposed to increase the speed of pedestrian detection using HOG-SVM classifier. Standard techniques follow a sliding window approach with a fixed sliding strides over a multi-resolution image pyramid for detection. The presented technique breaks down the detection task into sparse sampling and dense sampling stages where the first one is region proposal step and second stage scans only the proposed regions for objects. Sparse sampling stage is working as weak classifier whereas the dense sampling stage works as strong classifier for an image patch. Average pedestrian detection speed using the proposed technique gave improvement from 1.95 fps to 15.36 fps for input images of dimension [640, 360] on a system with 3.2 GHz CPU. UAV123 [1] dataset has been chosen to train the classifier. For detection, Average Center Prediction Error has been taken to quantify detection performance with increased speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 445–461. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_27

    Chapter  Google Scholar 

  2. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 (2001)

    Google Scholar 

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  4. Jayadeva, Deb, A., Chandra, S.: Binary classification by SVM based tree type neural networks. In: Proceedings of the 2002 International Joint Conference on Neural Networks, vol. 3, pp. 2773–2778 (2002)

    Google Scholar 

  5. Dollár, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: The British Machine Vision Conference, pp. 91.1–91.11 (2009)

    Google Scholar 

  6. Cao, X., Wu, C., Yan, P., Li, X.: Linear SVM classification using boosting hog features for vehicle detection in low-altitude airborne videos. In: IEEE Conference on Image Processing, pp. 2421–2424 (2011)

    Google Scholar 

  7. Dollar, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)

    Article  Google Scholar 

  8. Blondel, P., Potelle, A., Pegard, C., Lozano, R.: Human detection in uncluttered environments: from ground to UAV view. In: 13th International Conference on Control Automation Robotics and Vision, pp. 76–81 (2014)

    Google Scholar 

  9. Zhang, L., Wu, B., Nevatia, R.: Pedestrian detection in infrared images based on local shape features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  10. Xu, Y., Yu, G., Wu, X., Wang, Y., Ma, Y.: An enhanced Viola-Jones vehicle detection method from unmanned aerial vehicles imagery. IEEE Trans. Intell. Transp. Syst. 18(7), 1845–1856 (2017)

    Article  Google Scholar 

  11. Yang, Z., Huang, Z., Yang, Y., Yang, F., Yin, Z.: Accurate specified-pedestrian tracking from unmanned aerial vehicles. In: International Conference on Communication Technology Proceedings, ICCT, October 2019, pp. 1256–1260 (2019)

    Google Scholar 

  12. Park, W.-J., Kim, D.-H., Suryanto, Lyuh, C.-G., Roh, T.M., Ko, S.-J.: Fast human detection using selective block-based HOG-LBP. In: 19th IEEE International Conference on Image Processing, pp. 601–604 (2012)

    Google Scholar 

  13. Sheng, Y., Jiefa, W., Lingling, Z.: A fast pedestrian detection method based on simplified HOG descriptor. Int. J. Digit. Content Technol. Appl. 6(4), 14 (2012)

    Google Scholar 

  14. Vasuki, P., Veluchamy, S.: Pedestrian detection for driver assistance systems. In: International Conference on Recent Trends in Information Technology, pp. 1–4 (2016)

    Google Scholar 

  15. Son, H., Lee, S., Choi, J., Min, K.: Efficient pedestrian detection by Bin-interleaved Histogram of Oriented Gradients. In: IEEE Region 10 Conference-TENCON, pp. 2322–2325 (2010)

    Google Scholar 

  16. Min, K., Son, H., Choe, Y., Kim, Y.-G.: Real-time pedestrian detection based on a hierarchical two-stage Support Vector Machine. In: 8th IEEE Conference on Industrial Electronics and Applications, pp. 114–119 (2013)

    Google Scholar 

  17. Yuan, X., Cai-nian, L., Xiao-liang, X., Mei, J., Jian-guo, Z.: A two-stage hog feature extraction processor embedded with SVM for pedestrian detection. In: IEEEInternational Conference on Image Processing, pp. 3452–3455 (2015)

    Google Scholar 

  18. Wang, M.-S., Zhang, Z.-R.: FPGA implementation of hog based multi-scale pedestrian detection. In: IEEE International Conference on Applied System Invention, pp. 1099–1102 (2018)

    Google Scholar 

  19. Hearst, M., Dumais, S., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 740–755 (1998)

    Article  Google Scholar 

  20. Vapnik, V., Cortes, C.: Support vector networks. Mach. Learn. 20, 622–628 (1995)

    MATH  Google Scholar 

  21. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014. ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  23. Čehovin, L., Leonardis, A., Kristan, M.: Visual object tracking performance measures revisited. IEEE Trans. Image Process. 25(3), 1261–1274 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We kindly acknowledge IMPRINT I project, MHRD, Govt. of India for supporting with resources from the project “Decentralized target tracking using swarm of aerial robots”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjeet Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, R., Deb, A.K. (2022). A Sparse-Dense HOG Window Sampling Technique for Fast Pedestrian Detection in Aerial Images. In: Mekhilef, S., Shaw, R.N., Siano, P. (eds) Innovations in Electrical and Electronic Engineering. ICEEE 2022. Lecture Notes in Electrical Engineering, vol 893. Springer, Singapore. https://doi.org/10.1007/978-981-19-1742-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1742-4_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1741-7

  • Online ISBN: 978-981-19-1742-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics