Skip to main content

Experimental Mammalian Cell Culture-Based Assays

Practical Approach to Mammalian Cell and Organ Culture

Abstract

Mammalian cell culture-based assays offer multiple vital clues to understanding several distinct physiological and pathophysiological events related to cells. The key events in this regard comprise the effects of various drugs and toxins on cell survival, cellular metabolism and proliferation, cell adhesion and migration, programmed and nonprogrammed cell death (apoptosis/necrosis), generation of reactive oxygen species (ROS), reactive nitrogen species (RNS), and so on. This chapter briefly describes the fundamentals and importance of above-mentioned cellular events and protocols to track cellular events such as cell proliferation along with the pros and cons of every assay. All these assays have an implicit association with mammalian cell proliferation, survival, adhesion, migration, apoptosis, and measurement of ROS and RNS generation levels. A discussion of these issues will enhance the reader’s knowledge regarding mammalian cellular physiology as well as pathophysiology under in vitro (cell culture) conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azzi A, Montecucco C, Richter C. The use of acetylated ferricytochrome C for the detection of superoxide radicals produced in biological membranes. Biochem Biophys Res Commun. 1975;65:597–603.

    Article  CAS  Google Scholar 

  • Berridge MV, Tan AS. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys. 1993;303:474–82.

    Article  CAS  Google Scholar 

  • Berridge M, Tan A, McCoy K, Wang R. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica. 1996;4:14–9.

    Google Scholar 

  • Bossy-Wetzel E, Green DR. Detection of apoptosis by Annexin V labeling. Methods Enzymol. 2000;322:15–8.

    Article  CAS  Google Scholar 

  • Buch K, Peters T, Nawroth T, Sänger M, Schmidberger H, Langguth P. Determination of cell survival after irradiation via clonogenic assay versus multiple MTT assay-A comparative study. Rad Oncol. 2012;7:1.

    Article  Google Scholar 

  • Burd JF, Usategui-Gomez M. A colorimetric assay for serum lactate dehydrogenase. Clin Chim Acta. 1973;46:223–7.

    Article  CAS  Google Scholar 

  • Chen HC. Boyden chamber assay. Methods Mol Biol. 2005;294:15–22.

    Google Scholar 

  • Chen Y, Lu B, Yang Q, Fearns C, Yates JR, Lee JD. Combined integrin phosphoproteomic analyses and small interfering RNA-based functional screening identify key regulators for cancer cell adhesion and migration. Cancer Res. 2009;69:3713–20.

    Article  CAS  Google Scholar 

  • Choi HS, Kim JW, Cha YN, Kim C. A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J Immunoass Immunochem. 2006;27:31–44.

    Article  CAS  Google Scholar 

  • Collins JA, Schandl CA, Young KK, Vesely J, Willingham MC. Major DNA fragmentation is a late event in apoptosis. J Histochem Cytochem. 1997;45:923–34.

    Article  CAS  Google Scholar 

  • Crowley LC, Marfell BJ, Waterhouse NJ. Detection of DNA fragmentation in apoptotic cells by TUNEL. Cold Spring Harb Protoc. 2016;10:900–5.

    Google Scholar 

  • Csonka C, Páli T, Bencsik P, Görbe A, Ferdinandy P, Csont T. Measurement of NO in biological samples. Br J Pharmacol. 2015;172:1620–32.

    Article  CAS  Google Scholar 

  • Decker T, Lohmann-Matthes ML. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor TNF activity. J Immunol Methods. 1988;115:61–9.

    Article  CAS  Google Scholar 

  • Dikalov SI, Harrison DG. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid Redox Signal. 2014;20:372–82.

    Article  CAS  Google Scholar 

  • Dikalov S, Griendling KK, Harrison DG. Measurement of reactive oxygen species in cardiovascular studies. Hypertension. 2007;49:717–27.

    Article  CAS  Google Scholar 

  • Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.

    Article  CAS  Google Scholar 

  • Friedman HM, Glaubiger DL. Assessment of in vitro drug sensitivity of human tumor cells using [3H] Thymidine incorporation in a modified human tumor stem cell assay. Cancer Res. 1982;42:4683–9.

    CAS  Google Scholar 

  • Genderen HV, Kenis H, Petra Lux P, Ungethüm L, Maassen C, Deckers N, et al. In vitro measurement of cell death with the annexin A5 affinity assay. Nat Protocols. 2006;1:363–7.

    Google Scholar 

  • Granger DL, Anstey NM, Miller WC, Weinberg JB. Measuring nitric oxide production in human clinical studies. Methods Enzymol. 1999;301:49–61.

    Article  CAS  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnock JS, Tannenbaum SR. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem. 1982;126:131–8.

    Article  CAS  Google Scholar 

  • Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, et al. Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system. A scientific statement from the American Heart Association. Circ Res. 2016;119:e75–39.

    Article  Google Scholar 

  • Gurtu V, Kain SR, Zhang G. Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal Biochem. 1997;251:98–102.

    Article  CAS  Google Scholar 

  • Hafer K, Iwamotoa KS, Schiest RH. Refinement of the dichlorofluorescein assay for flow cytometric measurement of reactive oxygen species in irradiated and bystander cell populations. Radiat Res. 2008;169:460–8.

    Article  CAS  Google Scholar 

  • Humphries M. Cell-substrate adhesion assays. Curr Protoc Cell Biol. 1998:9.1.1–9.1.11.

    Google Scholar 

  • Jonkman JEN, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, et al. An introduction to the wound healing assay using live-cell microscopy. Cell Adhes Migr. 2014;8:440–51.

    Article  Google Scholar 

  • Jourd’heuil D, Jourd’heuil FL, Kutchukian PS, Musah RA, Wink DA, Grisham MB. Reaction of superoxide and nitric oxide with peroxynitrite. Implications for peroxynitrite-mediated oxidation reactions in vivo. J Biol Chem. 2001;276:28799–805.

    Google Scholar 

  • Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. In vitro cell migration and invasion assays. J Vis Exp. 2014;88:51046.

    Google Scholar 

  • Kalyanaraman B, Darley-Usmar V, Davies KJA, Dennery PA, Forman HJ, Grisham MB, et al. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med. 2012;52:1–6.

    Article  CAS  Google Scholar 

  • Khalili AA, Ahmad MR. A review of cell adhesion studies for biomedical and biological applications. Int J Mol Sci. 2015;16:18149–84.

    Article  CAS  Google Scholar 

  • Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. J Immunol Methods. 1983;64:313–20.

    Article  CAS  Google Scholar 

  • Li Y, Zhu H, Kuppusamy P, Roubaud V, Zweier JL, Trush MA. Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems. J Biol Chem. 1998;273:2015–2023.

    Google Scholar 

  • Liang CC, Park AY, Jun-Lin Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protocol. 2007;2:329–33.

    Article  CAS  Google Scholar 

  • Marshall NJ, Goodwin CJ, Holt SJ. A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. Growth Regul. 1995;5:69–84.

    CAS  Google Scholar 

  • Martin-Romero FJ, Guti’errez-Martin Y, Henao F, Guti’errez-Merino C. Fluorescence measurements of steady state peroxynitrite production upon SIN-1 decomposition: NADH versus Dihydrodichlorofluorescein and Dihydrorhodamine 123. J Fluoresc. 2004;14:17–23.

    Article  CAS  Google Scholar 

  • Mobley J, Shimizu Y. Measure-ment of cellular adhesion under static conditions. Curr Protoc Immunol. 2001; Chapter 7: Unit 7.28.

    Google Scholar 

  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth. 1983;65:55–63.

    Article  CAS  Google Scholar 

  • Pegg DE. Viability assays for preserved cells, tissues, and organs. Cryobiology. 1989;26:212–31.

    Article  CAS  Google Scholar 

  • Poot M, Pierce RH. Detection of changes in mitochondrial function during apoptosis by simultaneous staining with multiple fluorescent dyes and correlated multiparameter flow cytometry. Cytometry. 1999;35:311–7.

    Article  CAS  Google Scholar 

  • Riss TL, Moravec RA, Niles AL, Duellman S, et al. Assay guidance manual [Internet]. Cell viability assays. 2013; Last Update: July 1, 2016.

    Google Scholar 

  • Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2015;2:A3.B.1–3.

    Google Scholar 

  • Sun J, Zhang X, Broderick M, Fein H. Measurement of nitric oxide production in biological systems by using griess reaction assay. Sensors. 2003;3:276–84.

    Article  CAS  Google Scholar 

  • Tarpey MM, White CR, Suarez E, Richardson G, Radi R, Freeman BA. Chemiluminescent detection of oxidants in vascular tissue. Lucigenin but not coelenterazine enhances superoxide formation. Circ Res. 1999;84:1203–11.

    Article  CAS  Google Scholar 

  • Tominaga H, Ishiyama M, Ohseto F, Sasamoto K, Hamamoto T, Suzuki K, et al. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun. 1999;36:47–50.

    Article  CAS  Google Scholar 

  • Turman MA, Mathews A. A simple luciferase assay to measure ATP levels in small numbers of cells using a fluorescent plate reader. In Vitro Cell Dev Biol Anim. 1996;32:1–4.

    Article  CAS  Google Scholar 

  • Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods. 1995;184:39–51.

    Article  CAS  Google Scholar 

  • Villamena FA, Zweier JI. Detection of reactive oxygen and nitrogen species by epr spin trapping. Antioxid Redox Signal. 2004;6:619–29.

    Article  CAS  Google Scholar 

  • Wardman P. Methods to measure the reactivity of peroxynitrite-derived oxidants toward reduced fluoresceins and rhodamines. Methods Enzymol. 2008;441:261–82.

    Article  CAS  Google Scholar 

  • Waterhouse NJ, Trapani JA. A new quantitative assay for cytochrome c release in apoptotic cells. Cell Death Differ. 2003;10:853–5.

    Article  CAS  Google Scholar 

  • Zhang J, Wang X, Cui W, Wang W, Zhang H, Liu L, et al. Visualization of caspase-3-like activity in cells using a genetically encoded fluorescent biosensor activated by protein cleavage. Nat Commun. 2013;4:2157.

    Article  Google Scholar 

  • Zielonka J, Kalyanaraman B. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med. 2010;48:983–1001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, S., Malik, P., Mukherjee, T.K. (2023). Experimental Mammalian Cell Culture-Based Assays. In: Mukherjee, T.K., Malik, P., Mukhopadhyay, S. (eds) Practical Approach to Mammalian Cell and Organ Culture. Springer, Singapore. https://doi.org/10.1007/978-981-19-1731-8_16-1

Download citation

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Experimental Mammalian Cell Culture-Based Assays
    Published:
    20 January 2023

    DOI: https://doi.org/10.1007/978-981-19-1731-8_16-2

  2. Original

    Experimental Mammalian Cell Culture-Based Assays
    Published:
    10 December 2022

    DOI: https://doi.org/10.1007/978-981-19-1731-8_16-1