Skip to main content

Physical Responses of Golden Pompano Trachinotus ovatus to Rearing Salinity

  • Chapter
  • First Online:
Ontogenetic development of pompano Trachinotus ovatus

Abstract

The physiological status of euryhaline teleost is regulated by environmental salinity through different mechanisms. This chapter discusses the salinity to the juvenile golden pompano Trachinotus ovatus (Linnaeus 1758) rearing performance impact.

Rearing salinity significantly affected fish growth and the RNA/DNA ratio. When the salinity was 34‰, the fish growth rate and RNA/DNA ratio were higher. The effect of salinity on pepsin activity was not significant. However, rearing salinity had a significant effect on α-amylase activity. The α-amylase activity of fish reared at the salinity of 10‰ was significantly lower than fish at the salinity of 34‰. Raising salinity has significant effects on FCR of juvenile golden pompano. The FCR of fish cultured at the salinity of 10‰ was five times higher than the FCR of fish reared at 34‰. The GPX activity was highest when the salinity was 26‰ and lowest when the salinity was 34‰. The activities of SOD of fish reared at 18‰ and 34‰ were significantly higher than those reared at 10‰ and 26‰. The lowest activity of Na+K+-ATPase was obtained in fish at 34‰, while the highest activity of Na+K+-ATPase was obtained when fish at 18‰. Juvenile golden pompano can be reared above 26‰ without affecting fish performance, and the salinity <18‰ is not suitable for the growth of juvenile golden pompano.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alava VR (1998) Effect of salinity, dietary lipid source and level on growth of milkfish (Chanos chanos) fry. Aquaculture 167:229–236

    Article  CAS  Google Scholar 

  • Aliume C, Zerbi A, Miller JM (1997) Nursery habitat and diet of juvenile Centropomus undecimalis species in Puerto Rico estuaries. Gulf Mexico Sci 15:77–87

    Google Scholar 

  • Arnason T, Magnadottr B, Bjornsson B, Steinarsson A, Bjornsson BT (2013) Effects of salinity and temperature on growth, plasma ions, cortisol and immune parameters of juvenile Atlantic cod (Gadus morhua). Aquaculture 380–383:70–79

    Article  CAS  Google Scholar 

  • Baeuf G, Payan P (2001) How should salinity influence fish growth? Comp Biochem Physiol C Toxicol Pharmacol 130:411–423

    Article  Google Scholar 

  • Brett JR (1979) Environmental factors and growth. In: Hoar WS et al (eds) Fish physiology. Academic, New York, pp 599–675

    Google Scholar 

  • Burg MB, Ferraris JD, Dmitrieva NI (2007) Cellular response to hyperosmotic stresses. Physiol Rev 87:1441–1474

    Article  CAS  PubMed  Google Scholar 

  • Choi K, Cope WG, Harms CA, Law JM (2013) Rapid decreases in salinity, but not increases, lead to immune dysregulation in Nile tilapia, Oreochromis niloticus (L.). J Fish Dis 36:389–399

    Article  CAS  PubMed  Google Scholar 

  • Colin DA, Nonnotte G, Leray C, Nonnotte L (1985) Na transport and enzyme activities in the intestine of the freshwater and seawater adapted trout (Salmo gairdnerii R.). Comp Biochem Physiol A Comp Physiol 81:695–698

    Article  CAS  PubMed  Google Scholar 

  • Costa LF, Miranda-Filho KC, Severo MP, Sampaio LA (2008) Tolerance of juvenile pompano Trachinotus marginatus to acute ammonia and nitrite exposure at different salinity levels. Aquaculture 285:270–272

    Article  CAS  Google Scholar 

  • Dutil JD, Lambert Y, Boucher E (1997) Does higher growth rate in Atlantic cod (Gadus morhua) at low salinity result from lower standard metabolic rate or increased protein digestibility? Can J Fish Aquat Sci 54:99–103

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (1996) Lipid peroxidation: a radical chain reaction. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Clarendon Press, Oxford, pp 188–266

    Google Scholar 

  • Harris I, Bird DJ (2000) Modulation of the fish immune system by hormones. Vet Immunol Immunopathol 77:163–176

    Article  CAS  PubMed  Google Scholar 

  • Hirose S, Kaneko T, Naito N, Takei Y (2003) Molecular biology of major components of chloride cells. Comp Biochem Physiol B Biochem Mol Biol 136:593–620

    Article  PubMed  CAS  Google Scholar 

  • Kalidas C, Sakthivel M, Tamilmani G, Pamesh Kumar P, Abdul AK, Jayakumar R, Balamurugan, Ramkumar, Jothi P, Gopakumar G (2012) Survival and growth of juvenile silver pompano Trachinotus blochii (Lacepede, 1801) at different salinities in tropical conditions. Indian J Fish 59:95–98

    Google Scholar 

  • Kelly SP, Chow INK, Woo NYS (1999) Effect of prolactin and growth hormone on strategies of hypoosmotic adaption in a marine teleost Sparus sarba. Gen Comp Endocrinol 113:9–22

    Article  CAS  PubMed  Google Scholar 

  • Klaoudatos SD, Conides AJ (1996) Growth, food conversion, maintenance and long-term survival of gilthead sea bream, Sparus auratus L., juveniles after abrupt transfer to low salinity. Aquac Res 27:765–774

    Article  Google Scholar 

  • Klomklao S (2008) Digestive proteinases from marine organisms and their applications. Aerosp Sci Technol 30:37–46

    Google Scholar 

  • Lambert Y, Dutil JD, Munro J (1994) Effects of intermediate and low salinity conditions on growth rate and food conversion of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 51:1569–1576

    Article  Google Scholar 

  • Ma Z, Guo H, Zheng P, Wang L, Jiang S, Qin JG, Zhang D (2014) Ontogenetic development of digestive functionality in golden pompano Trachinotus ovatus (Linnaeus 1758). Fish Physiol Biochem 40:1157–1167

    CAS  PubMed  Google Scholar 

  • Ma Z, Guo H, Zheng P, Wang L, Jiang S, Zhang D, Qin JG (2016a) Effect of salinity on the rearing performance of juvenile golden pompano Trachinotus ovatus (Linnaeus 1758). Aquac Res 47(6):1761–1769

    Article  CAS  Google Scholar 

  • Ma Z, Zheng P, Guo H, Jiang S, Qin JG, Zhang D (2016b) Salinity regulates antioxidant enzyme and Na+K+-ATPase activities of juvenile golden pompano Trachinotus ovatus (Linnaeus 1758). Aquac Res 47(5):1481–1487

    Article  CAS  Google Scholar 

  • Madsen SS, Larsen BK, Jensen FB (1996) Effects of freshwater to seawater transfer on osmoregulation, acid-base balance and respiration in river migrating whitefish (Coregonmus lavaretus). J Comp Physiol B 166:101–109

    Article  Google Scholar 

  • Marshall WS (2002) Na+, Cl, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. J Exp Zool 293:264–283

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Alvarez RM, Hidalgo MC, Domezain A, Morales AE, Garcia-Gallego M, Sanz A (2002) Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity. J Exp Biol 205:3699–3706

    Article  CAS  PubMed  Google Scholar 

  • McCormick SD (1995) Hormonal control of gill Na+, K+-ATPase and chloride cell function. In: Wood CM, Shuttleworth TJ (eds) Cellular and molecular approaches to fish ionic regulation. Academic, San Diego, pp 285–315

    Google Scholar 

  • Moe MAJ, Lewis RH, Ingle RM (1968) Pompano mariculture: preliminary data and basic consideration. State of Florida Board of Conservation Technical Series 55:65

    Google Scholar 

  • Morgan JD, Sakamoto T, Grau EG, Iwama GK (1997) Physiological and respiratory responses of the Mozambique tilapia (Oreochromis mossambicus) to salinity acclimation. Comp Biochem Physiol A Physiol 117:391–398

    Article  Google Scholar 

  • Moser ML, Miller JM (1994) Effects of salinity fluctuation on routine metabolism of juvenile spot, Leistomus xanthurus. J Fish Biol 45:335–340

    Google Scholar 

  • Moutou KA, Panagiotaki P, Mamuris Z (2004) Effects of salinity on digestive protease activity in the euryhaline sparid Sparus aurata L.: a preliminary study. Aquac Res 35:912–914

    Article  CAS  Google Scholar 

  • Papoutsoglou ES, Lyndon AR (2003) Distribution of α-amylase along the alimentary tract of two Mediterranean fish species, the parrotifish Sparisoma cretense L. and the stargazer, Uranoscopus scaber L. Mediterr Mar Sci 4:115–124

    Article  Google Scholar 

  • Partridge GJ, Jenkins GI (2002) The effect of salinity on growth and survival of juvenile black bream (Acanthopagrus butcheri). Aquaculture 210:219–230

    Article  Google Scholar 

  • Peters KM, Matheson RE Jr, Taylor RG (1998) Reproduction and early life history of common snook, Centropomus undecimalis (Bloch), in Florida. Bull Mar Sci 62:509–529

    Google Scholar 

  • Post RL, Jolly PC (1957) The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. BBA-Biomembranes 25:118–128

    CAS  PubMed  Google Scholar 

  • Rocha AJS, Gomes V, Ngan PV, Passos MJACR, Furia RR (2007) Effects of anionic surfactant and salinity on the bioenergetics of juveniles of Centropomus parallelus (Poey). Ecotox Environ Safe 68:397–404

    Article  CAS  Google Scholar 

  • Roche H, Boge G (1996) Fish blood parameters as a potential toll for identification of stress caused by environmental factors and chemical intoxication. Mar Environ Res 41:27–43

    Article  CAS  Google Scholar 

  • Rubio VC, Sanchez-Vazquez FJ, Madrid JA (2005) Effects of salinity on food intake and macronutrient selection in European sea bass. Physiol Behav 85:333–339

    Article  CAS  PubMed  Google Scholar 

  • Swanson C (1998) Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos). J Exp Biol 201:3355–3366

    Article  PubMed  Google Scholar 

  • Tanaka Y, Gwak WS, Tanaka M, Sawada Y, Okada T, Miyashita S, Kumai H (2007) Ontogenetic changes in RNA, DNA and protein contents of laboratory-reared Pacific bluefin tuna Thunnus orientalis. Fish Sci 73:378–384

    Article  CAS  Google Scholar 

  • Tseng YC, Hwang PP (2008) Some insights into energy metabolism for osmoregulation in fish. Comp Biochem Physiol C Toxicol Pharmacol 148:419–429

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki MY, Sugai JK, Maciel JC, Francisco CJ, Cerqueira VR (2007) Survival, growth and digestive enzyme activity of juveniles of the fat snook (Centropomus parallelus) reared at different salinities. Aquaculture 271:319–325

    Article  CAS  Google Scholar 

  • Ueberschär B (1988) Determination of the nutritional condition of individual marine fish larvae by analyzing their proteolytic enzyme activities with a highly sensitive fluorescence technique. Meeresforsch 32:144–154

    Google Scholar 

  • Wilhelm Filho D, Giulivi C, Boveris A (1993) Antioxidant defences in marine fish-I. Teleosts. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 106:409–413

    Article  Google Scholar 

  • Winston GW, Di Giulio RT (1991) Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19:137–161

    Article  CAS  Google Scholar 

  • Woo NYS, Kelly SP (1995) Effects of salinity and nutritional status on growth and metabolism of Sparus sarba in a closed seawater system. Aquaculture 135:229–238

    Article  Google Scholar 

  • Yan M, Wu X (2010) Effects of different salinities on digesitve enzyme activities of the pufferfish Takifugu ocellatus. Chin J Anim Nutr 22:797–803

    CAS  Google Scholar 

  • Zhang Y, Mai K, Ma H, Ai Q, Zhang W, Xu W (2011) Rearing in intermediate salinity enhances immunity and disease-resistance of turbot (Scophthalmus maximus L.). Acta Oceanol Sin 30:122–128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 China Agriculture Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, S., Han, M., Yang, R., Hu, J. (2022). Physical Responses of Golden Pompano Trachinotus ovatus to Rearing Salinity. In: Ma, Z., Yu, G., Qin, J.G. (eds) Ontogenetic development of pompano Trachinotus ovatus. Springer, Singapore. https://doi.org/10.1007/978-981-19-1712-7_6

Download citation

Publish with us

Policies and ethics