Skip to main content

Twist Gene in Golden Pompano Trachinotus ovatus Larvae

  • Chapter
  • First Online:
Ontogenetic development of pompano Trachinotus ovatus

Abstract

In this chapter, the twist gene and its expression pattern in golden pompano are discussed. The golden pompano twist cDNA of 880 bp contains an open reading frame of 507 nucleotides encoding a protein of 168 amino acids. The protein has a molecular weight of 18.93 kDa. The expression of the twist gene increased with fish age after hatching and arrived at the maximum at 3 and 4 DPH. The highest expression level of the twist gene in fish tissues on 18 DPH occurred in the stomach and spleen, whereafter the kidney and brain. On 12 DPH, the expression of twist first increased and then decreased from 23 to 29 °C. On 18 DPH, the rearing temperature had no significant effect on the expression of the twist gene. The temporal variation of twist expression in fish larvae may enhance our understanding of bone ontogeny and formation in fish larvae, and the twist gene expression may serve as a useful indicator in larval rearing management of golden pompano to predict the occurrence of body malformation in the early stage of fish development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afanador E, Yokozeki M, Oba Y, Kitase Y, Takahashi T, Kudo A, Moriyama K (2005) Messenger RNA espression of periosin and Twist transiently decrease by occlusal hypofunction in mouse periodontal ligament. Arch Oral Biol 50:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Atchley WR, Fitch WM (1997) A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci U S A 94:5172–5176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baylies MK, Bate M (1996) Twist: a myogenic swithch in Drosophila. Science 272:1481–1484

    Article  CAS  PubMed  Google Scholar 

  • Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hua W, Kai Y, Ornitz DM, Olson EC, Justice MJ, Karsenty G (2004) A twist code determines the onset of osteoblast differentiation. Dev Cell 6:423–435

    Article  CAS  PubMed  Google Scholar 

  • Bloch-Zupan A, Hunter N, Manthey A, Gibbins J (2001) R-twist gene expression during rat palatogenesis. Int J Dev Biol 45:397–404

    CAS  PubMed  Google Scholar 

  • Castanon I, Baylies MK (2002) A twist in fate: evolutionary comparison of Twist structure and function. Gene 287:11–22

    Article  CAS  PubMed  Google Scholar 

  • Cripps RM, Black BL, Zhao B, Lien CL, Olson EN (1998) The myogenic regulatory gene Mef2 is a direct target for transcriptional activation by Twist during Drosophila myogenesis. Genes Dev 12:422–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dill KK, Thamm K, Seaver EC (2007) Characterization of twist and snail gene expression during mesoderm and nervous system development in the polychaete annelid Capitella sp. I. Dev Genes Evol 217:435–447

    Article  PubMed  Google Scholar 

  • Fuchtbauer EM (1995) Expression of M-twist during postimplantation development of the mouse. Dev Dynam 204:316–322

    Article  CAS  Google Scholar 

  • Fuchtbauer EM (2002) Inhibition of skeletal muscle development: less differentiation gives more muscle. Results Probl Cell Differ 38:143–161

    Article  CAS  PubMed  Google Scholar 

  • Germanguz I, Gitelman I (2012) All four twist genes of zebrafish have partially redundant, but essential, roles in patterning the craniofacial skeleton. J Appl Ichthyol 28:364–371

    Article  CAS  Google Scholar 

  • Germanguz I, Lev D, Waisman T, Kim C-H, Gitelman I (2007) Four twist genes in zebrafish, four expression patterns. Dev Dynam 236:2615–2626

    Article  CAS  Google Scholar 

  • Guo M, Wang Y, Shi J, Kang L, Yao Q, Wang F, Qin L, Chen K (2011) Molecular cloning and characterization of twist gene in Bombyx mori. Mol Cell Biochem 348:69–76

    Article  CAS  PubMed  Google Scholar 

  • Halpern ME, Thisse C, Ho RK (1995) Cell-autonomous shift from axial to paraxial mesodermal development in zebrafish floating head mutants. Development 121:4257–4264

    Article  CAS  PubMed  Google Scholar 

  • Hamamori Y, Wu HY, Sartorelli V, Kedes L (1997) The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist. Mol Cell Biol 17:6563–6573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann C (2009) Transcriptional networks controlling skeletal development. Curr Opin Genet Dev 19:437–443

    Article  CAS  PubMed  Google Scholar 

  • Hebrok M, Wertz K, Fuchtbauer EM (1994) M-twist is an inhibtor of muscle differentiation. Dev Biol 165:537–544

    Article  CAS  PubMed  Google Scholar 

  • Hebrok M, Fuchtbauer A, Fuchtbauer EM (1997) Repression of muscle-specific gene activation by the murine twist protein. Exp Cell Res 232:295–303

    Article  CAS  PubMed  Google Scholar 

  • Hinoi E, Bialek P, Chen YT, Rached MT, Karsenty G (2006) Runx2 inhibits chondrocyte proliferation and hypertrophy through its espression in the perichondrium. Genes Dev 20:2937–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopwood ND, Pluck A, Gurdon JB (1989) A Xenopus mRNA related to Drosophila twist is expressed in response to induction in the mesoderm and the neural crest. Cell 59:893–903

    Article  CAS  PubMed  Google Scholar 

  • Hornik C, Brand-Saberi B, Rudloff S, Christ B, Füchtbauer EM (2004) Twist is an integrator of SHH, FGF, and BMP signalling. Anat Embryol 209:31–39

    Article  CAS  Google Scholar 

  • Ishii M, Merrill AE, Chan YS, Gitelman I, Rice DPC, Sucov HM, Maxson RE (2003) Msx2 and Twist cooperatively control the development of the neural crest-derived skeletogenic mesenchyme of the murine skull vault. Development 130:6131–6142

    Article  CAS  PubMed  Google Scholar 

  • Komori T (2006) Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 99:1233–1239

    Article  CAS  PubMed  Google Scholar 

  • Lee MS, Lowe GN, Strong DD, Wergedal JE, Glackin CA (1999) TWIST, a basic helix-loop-helix transcription factor, can regulate the human osteogenic lineage. J Cell Biochem 75:566–577

    Article  CAS  PubMed  Google Scholar 

  • Li L, Cserjest P, Olson EN (1995) Dermo-1: a novel twist-related bHLH protein expressed in the developing dermis. Dev Biol 172:280–292

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Guo H, Zheng P, Wang L, Jiang S, Qin JG, Zhang D (2014) Ontogenetic development of digestive functionality in golden pompano Trachinotus ovatus (Linnaeus 1758). Fish Physiol Biochem 40(4):1157–1167

    CAS  PubMed  Google Scholar 

  • Ma Z, Zheng P, Guo H, Zhang N, Jiang S, Zhang D, Qin JG (2016) Jaw malformation of hatchery reared golden pompano Trachinotus ovatus (Linnaeus 1758) larvae. Aquac Res 47:1141–1149

    Article  Google Scholar 

  • Ma Z, Fu M, Qin JG, Hu J, Zhou S, Yang R (2018) Molecular cloning of Twist gene and its expression in golden pompano Trachinotus ovatus (Linnaeus 1758) larvae at different water temperatures. Isr J Aquacult Bamidgeh 70:1–11

    Google Scholar 

  • Murray SS, Glackin CA, Winters KA, Gazit D, Kahn AJ, Murray EJ (1992) Expression of helix-loop-helix regulatory genes during differentiation of mouse osteoblastic cells. J Bone Miner Res 7:1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Nieto MA, Patel K, Wilkinon DG (1996) Chapter 11 In situ hybridization analysis of chick embryos in whole mount and tissue sections. Method Cell Biol 51:219–235

    Article  CAS  Google Scholar 

  • Reinhold MJ, Kapadia RM, Liao Z, Naski MC (2006) The Wnt-inducible tanscription factor Twist1 inhibits chondrogenesis. J Biol Chem 281:1381–1388

    Article  CAS  PubMed  Google Scholar 

  • Rice DPC, Aberg T, Chan Y, Tang Z, Thesleff I (2000) Integration of FGF and TWIST in calvarial bone and suture development. Development 127:1845–1855

    Article  CAS  PubMed  Google Scholar 

  • Rohwedel J, Horák V, Hebrok M, Füchtbauer EM, Wobus AM (1995) M-twist expression inhibits mouse embryonic stem cell-derived myogenic differentiation in vitro. Exp Cell Res 220:92–100

    Article  CAS  PubMed  Google Scholar 

  • Scaal M, Fuchtbauer EM, Brand-Saberi B (2001) cDermo-1 expression indicates a role in avian skin development. Anat Embryol 203:1–7

    Article  CAS  Google Scholar 

  • Scaal M, Prols F, Fuchtbauer EM, Patel K, Hornik C, Khler T, Christ B, Brand-Saberi B (2002) BMPs induce dermal markers and ectopic feather tracts. Mech Dev 110:51–60

    Article  CAS  PubMed  Google Scholar 

  • Shishido E, Higashijima S, Emori Y, Saigo K (1993) Two FGF-receptor homologues of Drosophila: one is expressed in mesodermal primordium in early embryos. Development 117:751–761

    Article  CAS  PubMed  Google Scholar 

  • Simpson P (1983) Maternal-zygotic gene interactions during formation of the dorsoventral pattern in Drosophila embryos. Genetics 105(3):615–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Mak IWY, Cowan RW, Turcotte R, Singh G, Ghert M (2011) The role of TWIST as a regulator in giant cell tumor of bone. J Cell Biochem 112:2287–2295

    Article  CAS  PubMed  Google Scholar 

  • Soo K, O’Rourke MP, Khoo PL (2002) Twist function is required for the morphogenesis of the cephalic neural tube and the differentiation of the cranial neural crest cells in the mouse embryo. Dev Biol 105:615–632

    Google Scholar 

  • Spicer DB, Rhee J, Cheung WL, Lassar AB (1996) Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein twist. Science 272:1476–1480

    Article  CAS  PubMed  Google Scholar 

  • Stoetzel C, Weber B, Bourgeois P, Bolcato-Bellemin AL, Perrin-Schmitt F (1995) Dorso-ventral and rostro-caudal sequential expression of M-twist in the postimplantation murine embryo. Mech Dev 51:251–263

    Article  CAS  PubMed  Google Scholar 

  • Stoetzel C, Bolcato-Bellemin AL, Bourgeois P, Perrin-Schmitt F, Remy P (1998) X-twi is expressed prior to gastrulation in presumptive neurectodermal and mesodermal cells in dorsalized and ventralized Xenopus laevis embryos. Int J Dev Biol 42:747–756

    CAS  PubMed  Google Scholar 

  • Tavares AT, Izpisuja-Belmonte JC, Rodriguez-Leon J (2001) Developmental expression of chick twist and its regulation during limb patterning. Int J Dev Biol 45:707–713

    CAS  PubMed  Google Scholar 

  • Thisse B, el Messal M, Perrin-Schmitt F (1987) The twist gene: isolation of a Drosophia zygotic gene necessary for the establishment of dorsoventral pattern. Nucleic Acids Res 15(8):3439–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf C, Thisse C, Stoetzel C, Thisse B, Gerlinger P, Perrin-Schmitt F (1991) The M-twist gene of Mus is expressed in subsets of mesodermal cells and is closely related to the Xenopus X-twi and the Drosophila twist genes. Dev Biol 143:363–376

    Article  CAS  PubMed  Google Scholar 

  • Yan YL, Hatta K, Riggleman B, Postlethwait JH (1995) Expression of a type II collagen gene in the zebrafish embryonic axis. Dev Dynam 203:363–376

    Article  CAS  Google Scholar 

  • Yang Q, Ma Z, Zheng P (2016) Effect of temperature on growth, survival and occurrence of skeletal deformity in the golden pompano Trachinotus ovatus larvae. Indian J Fish 63:74–82

    Article  Google Scholar 

  • Yasutake J, Inohaya K, Kudo A (2004) Twist functions in vertebral column formation in medaka, Oryzias latipes. Mech Dev 121:883–894

    Article  CAS  PubMed  Google Scholar 

  • Yeo GH, Cheah FSH, Jabs EW, Chong SS (2007) Zebrafish twist1 is expressed in craniofacial, vertebral, and renal precursors. Dev Genes Evol 217:783–789

    Article  CAS  PubMed  Google Scholar 

  • Yeo GH, Cheah FSH, Winkler C, Jabs EW, Venkatesh B, Chong SS (2009) Phylogenetic and evolutionary relationships and developmental expression patterns of the zebrafish twist gene family. Dev Genes Evol 219:289–300

    Article  CAS  PubMed  Google Scholar 

  • Ytteborg E, Baeverfjord G, Torgersen J, Hjelde K, Takle H (2010) Molecular pathology of vertebral deformities in hyperthermic Atlantic salmone (Salmo salar). BMC Physiol 10:1–16

    Article  CAS  Google Scholar 

  • Zheng P, Ma Z, Guo H, Zhang D, Fu M, Zhang N, Jiang S (2016) Osteological ontogeny and malformations in larval and juvenile golden pompano Trachinotus ovatus (Linnaeu 1758). Aquac Res 47:1421–1431

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Guang Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 China Agriculture Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, Z., Ma, Z., Qin, J.G. (2022). Twist Gene in Golden Pompano Trachinotus ovatus Larvae. In: Ma, Z., Yu, G., Qin, J.G. (eds) Ontogenetic development of pompano Trachinotus ovatus. Springer, Singapore. https://doi.org/10.1007/978-981-19-1712-7_11

Download citation

Publish with us

Policies and ethics