Skip to main content

Deep Learning Based Fruit Defect Detection System

  • Conference paper
  • First Online:
Innovations in Electrical and Electronic Engineering (ICEEE 2022)

Abstract

During transportation, many defects appear on the surface of fruits due to multiple reasons such as negligence in packing methods, not maintaining the required temperature, and mixing rotten fruits with fresh fruits. This results in the quality of fruits getting degraded and the suppliers facing losses. In this research, a model is being created to detect defects in fruits. Convolutional Neural Network (CNN) is used because of its ability to learn from images, create patterns, then use it to train itself and predict results for fruit from its image. Our database consisted of 8 fruit images which are self-collated from google images and kaggle. Accuracy for each of the fruit classifier is more than 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ministry of Statistics and Programme Implementation, “Sector-wise GDP of India,” Statistics Times (2021). https://statisticstimes.com/economy/country/india-gdp-sectorwise.php

  2. Altisent, M.R.: Damage mechanisms in the handling of fruits. Handl. Fruits 1, 231–257 (1991)

    Google Scholar 

  3. “Fresh Fruits & Vegetables,” Agricultural & Processed Food Products Export Development Authority. http://apeda.gov.in/apedawebsite/six_head_product/FFV.htm. The area under cultivation of, %2C brinjal%2C Cabbages%2C etc.

  4. Sharma, S.: India wastes up to 16% of its agricultural produce; fruits, vegetables squandered the most. Finan. Express-Read to Lead (2019). https://www.financialexpress.com/economy/india-wastes-up-to-16-of-its-agricultural-produce-fruits-vegetables-squandered-the-most/1661671/

  5. Nakano, K.: Application of neural networks to the color grading of apples. Comput. Electron. Agric. 18(2–3), 105–116 (1997). https://doi.org/10.1016/s0168-1699(97)00023-9

    Article  Google Scholar 

  6. Lu, S., Lu, Z., Aok, S., Graham, L.: Fruit classification based on six layer convolutional neural network. In: International Conference Digital Signal Processing (2018). https://doi.org/10.1049/joe.2019.0422

  7. Kausar, A., Sharif, M., Park, J., Shin, D.R.: Pure-CNN: a framework for fruit images classification. In: Proceedings of the 2018 International Conference on Computational Science and Computational Intelligence, CSCI 2018, pp. 404–408 (2018). https://doi.org/10.1109/CSCI46756.2018.00082

  8. Dandavate, R., Patodkar, V.: CNN and data augmentation based fruit classification model. In: Proceedings of the 4th International Conference on IoT Social, Mobile, Analytics and Cloud, ISMAC 2020, pp. 784–787 (2020). https://doi.org/10.1109/I-SMAC49090.2020.9243440

  9. Chakraborty, S., Shamrat, F.M.J.M., Billah, M.M., Al Jubair, M., Alauddin, M., Ranjan, R.: Implementation of deep learning methods to identify rotten fruits, pp. 1207–1212 (2021). https://doi.org/10.1109/icoei51242.2021.9453004

  10. Leemans, V., Destain, M.F.: A real-time grading method of apples based on features extracted from defects. J. Food Eng. 61(1), 83–89 (2004). https://doi.org/10.1016/S0260-8774(03)00189-4

  11. Potdar, R.R., Shrivastava, A., Sohandani, R., Khatwani, N.: Fresh and Stale Images of Fruits and Vegetables. Kaggle. https://www.kaggle.com/raghavrpotdar/fresh-and-stale-images-of-fruits-and-vegetables

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshul Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhardwaj, A., Hasteer, N., Kumar, Y., Yogesh (2022). Deep Learning Based Fruit Defect Detection System. In: Mekhilef, S., Shaw, R.N., Siano, P. (eds) Innovations in Electrical and Electronic Engineering. ICEEE 2022. Lecture Notes in Electrical Engineering, vol 894. Springer, Singapore. https://doi.org/10.1007/978-981-19-1677-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1677-9_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1676-2

  • Online ISBN: 978-981-19-1677-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics