Skip to main content

HDL and ASCVD

  • Chapter
  • First Online:
HDL Metabolism and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1377))

Abstract

In this chapter, we summarize the relationship between circulating high-density lipoprotein (HDL) and atherosclerotic cardiovascular disease (ASCVD). HDL acts in many types of cells, such as endothelial cell, macrophage, T lymphocyte, etc. Recently, novel HDL-related therapies have been developed to treat ASCVD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Natarajan P, Collier TS, Jin Z, Lyass A, Li Y, Ibrahim NE, Mukai R, McCarthy CP, Massaro JM, D'Agostino RB, Gaggin HK, Bystrom C, Penn MS, Januzzi JL (2019) Association of an HDL Apolipoproteomic score with coronary atherosclerosis and cardiovascular death. J Am Coll Cardiol 73:2135–2145

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barrett TJ, Distel E, Murphy AJ, Hu J, Garshick MS, Ogando Y, Liu J, Vaisar T, Heinecke JW, Berger JS, Goldberg IJ and Fisher EA (2019) Apolipoprotein AI) promotes atherosclerosis regression in diabetic mice by suppressing Myelopoiesis and plaque inflammation. Circulation 140:1170–1184

    Google Scholar 

  3. Janoudi A, Shamoun FE, Kalavakunta JK, Abela GS (2016) Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J 37:1959–1967

    Article  CAS  PubMed  Google Scholar 

  4. Choi HY, Ruel I, Malina A, Garrod DR, Oda MN, Pelletier J, Schwertani A, Genest J (2018) Desmocollin 1 is abundantly expressed in atherosclerosis and impairs high-density lipoprotein biogenesis. Eur Heart J 39:1194–1202

    Article  CAS  PubMed  Google Scholar 

  5. Berbée JFP, Boon MR, Khedoe PPSJ, Bartelt A, Schlein C, Worthmann A, Kooijman S, Hoeke G, Mol IM, John C, Jung C, Vazirpanah N, Brouwers LPJ, Gordts PLSM, Esko JD, Hiemstra PS, Havekes LM, Scheja L, Heeren J, Rensen PCN (2015) Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun 6:6356

    Article  PubMed  CAS  Google Scholar 

  6. Bartelt A, John C, Schaltenberg N, Berbée JFP, Worthmann A, Cherradi ML, Schlein C, Piepenburg J, Boon MR, Rinninger F, Heine M, Toedter K, Niemeier A, Nilsson SK, Fischer M, Wijers SL, van Marken Lichtenbelt W, Scheja L, Rensen PCN, Heeren J (2017) Thermogenic adipocytes promote HDL turnover and reverse cholesterol transport. Nat Commun 8:15010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maganto-García E, Tarrio ML, Grabie N, D-x B, Lichtman AH (2011) Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation 124:185–195

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gotsman I, Grabie N, Gupta R, Dacosta R, MacConmara M, Lederer J, Sukhova G, Witztum JL, Sharpe AH, Lichtman AH (2006) Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation 114:2047–2055

    Article  CAS  PubMed  Google Scholar 

  9. Gaddis DE, Padgett LE, Wu R, McSkimming C, Romines V, Taylor AM, McNamara CA, Kronenberg M, Crotty S, Thomas MJ, Sorci-Thomas MG, Hedrick CC (2018) Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun 9:1095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kootte RS, Smits LP, van der Valk FM, Dasseux J-L, Keyserling CH, Barbaras R, Paolini JF, Santos RD, van Dijk TH, Dallinga-van Thie GM, Nederveen AJ, Mulder WM, Hovingh GK, Kastelein JP, Groen AK, Stroes E (2015) Effect of open-label infusion of an apoA-I-containing particle (CER-001) on RCT and artery wall thickness in patients with FHA. J Lipid Res 56:703–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hovingh GK, Smits LP, Stefanutti C, Soran H, Kwok S, de Graaf J, Gaudet D, Keyserling CH, Klepp H, Frick J, Paolini JF, Dasseux J-L, Kastelein JJP, Stroes ES (2015) The effect of an apolipoprotein A-I-containing high-density lipoprotein-mimetic particle (CER-001) on carotid artery wall thickness in patients with homozygous familial hypercholesterolemia: the modifying orphan disease evaluation (MODE) study. Am Heart J 169(5):736–742

    Article  CAS  PubMed  Google Scholar 

  12. Nicholls SJ, Andrews J, Kastelein JJP, Merkely B, Nissen SE, Ray KK, Schwartz GG, Worthley SG, Keyserling C, Dasseux J-L, Griffith L, Kim SW, Janssan A, Di Giovanni G, Pisaniello AD, Scherer DJ, Psaltis PJ, Butters J (2018) Effect of serial infusions of CER-001, a pre-β high-density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER-001 atherosclerosis regression acute coronary syndrome trial: a randomized clinical trial. JAMA Cardiol 3:815–822

    Article  PubMed  PubMed Central  Google Scholar 

  13. Du X-M, Kim M-J, Hou L, Le Goff W, Chapman MJ, Van Eck M, Curtiss LK, Burnett JR, Cartland SP, Quinn CM, Kockx M, Kontush A, Rye K-A, Kritharides L, Jessup W (2015) HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. Circ Res 116:1133–1142

    Article  CAS  PubMed  Google Scholar 

  14. Vergeer M, Korporaal SJA, Franssen R, Meurs I, Out R, Hovingh GK, Hoekstra M, Sierts JA, Dallinga-Thie GM, Motazacker MM, Holleboom AG, Van Berkel TJC, Kastelein JJP, Van Eck M, Kuivenhoven JA (2011) Genetic variant of the scavenger receptor BI in humans. N Engl J Med 364:136–145

    Article  CAS  PubMed  Google Scholar 

  15. Zanoni P, Khetarpal SA, Larach DB, Hancock-Cerutti WF, Millar JS, Cuchel M, DerOhannessian S, Kontush A, Surendran P, Saleheen D, Trompet S, Jukema JW, De Craen A, Deloukas P, Sattar N, Ford I, Packard C, AaS M, Alam DS, Di Angelantonio E, Abecasis G, Chowdhury R, Erdmann J, Nordestgaard BG, Nielsen SF, Tybjærg-Hansen A, Schmidt RF, Kuulasmaa K, Liu DJ, Perola M, Blankenberg S, Salomaa V, Männistö S, Amouyel P, Arveiler D, Ferrieres J, Müller-Nurasyid M, Ferrario M, Kee F, Willer CJ, Samani N, Schunkert H, Butterworth AS, Howson JMM, Peloso GM, Stitziel NO, Danesh J, Kathiresan S, Rader DJ (2016) Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science (New York, NY) 351:1166–1171

    Article  CAS  Google Scholar 

  16. Hoekstra M, van der Sluis RJ, Hildebrand RB, Lammers B, Zhao Y, Praticò D, van Berkel TJC, Rensen PCN, Kooijman S, Jauhiainen M, van Eck M (2020) Disruption of phospholipid transfer protein-mediated high-density lipoprotein maturation reduces scavenger receptor BI deficiency-driven atherosclerosis susceptibility despite unexpected metabolic complications. Arterioscler Thromb Vasc Biol 40:611–623

    Article  CAS  PubMed  Google Scholar 

  17. Zheng L, Nukuna B, Brennan M-L, Sun M, Goormastic M, Settle M, Schmitt D, Fu X, Thomson L, Fox PL, Ischiropoulos H, Smith JD, Kinter M, Hazen SL (2004) Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest 114:529–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng L, Settle M, Brubaker G, Schmitt D, Hazen SL, Smith JD, Kinter M (2005) Localization of nitration and chlorination sites on apolipoprotein A-I catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux from macrophages. J Biol Chem 280:38–47

    Article  CAS  PubMed  Google Scholar 

  19. Undurti A, Huang Y, Lupica JA, Smith JD, DiDonato JA, Hazen SL (2009) Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J Biol Chem 284:30825–30835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu Z, Wagner MA, Zheng L, Parks JS, Shy JM, Smith JD, Gogonea V, Hazen SL (2007) The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction. Nat Struct Mol Biol 14:861–868

    Article  CAS  PubMed  Google Scholar 

  21. DiDonato JA, Huang Y, Aulak KS, Even-Or O, Gerstenecker G, Gogonea V, Wu Y, Fox PL, Tang WHW, Plow EF, Smith JD, Fisher EA, Hazen SL (2013) Function and distribution of apolipoprotein A1 in the artery wall are markedly distinct from those in plasma. Circulation 128:1644–1655

    Article  CAS  PubMed  Google Scholar 

  22. Hewing B, Parathath S, Barrett T, Chung WKK, Astudillo YM, Hamada T, Ramkhelawon B, Tallant TC, Yusufishaq MSS, Didonato JA, Huang Y, Buffa J, Berisha SZ, Smith JD, Hazen SL, Fisher EA (2014) Effects of native and myeloperoxidase-modified apolipoprotein a-I on reverse cholesterol transport and atherosclerosis in mice. Arterioscler Thromb Vasc Biol 34:779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Nardo D, Labzin LI, Kono H, Seki R, Schmidt SV, Beyer M, Xu D, Zimmer S, Lahrmann C, Schildberg FA, Vogelhuber J, Kraut M, Ulas T, Kerksiek A, Krebs W, Bode N, Grebe A, Fitzgerald ML, Hernandez NJ, Williams BR, Knolle P, Kneilling M, Rocken M, Lutjohann D, Wright SD, Schultze JL, Latz E (2014) High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol 15:152–160

    Article  PubMed  CAS  Google Scholar 

  24. Ruiz M, Frej C, Holmér A, Guo LJ, Tran S, Dahlbäck B (2017) High-density lipoprotein-associated apolipoprotein M limits endothelial inflammation by delivering Sphingosine-1-phosphate to the Sphingosine-1-phosphate receptor 1. Arterioscler Thromb Vasc Biol 37:118–129

    Article  CAS  PubMed  Google Scholar 

  25. Fotakis P, Kothari V, Thomas DG, Westerterp M, Molusky MM, Altin E, Abramowicz S, Wang N, He Y, Heinecke JW, Bornfeldt KE, Tall AR (2019) Anti-inflammatory effects of HDL (high-density lipoprotein) in macrophages predominate over Proinflammatory effects in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 39:e253–e272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Small KS, Hedman AK, Grundberg E, Nica AC, Thorleifsson G, Kong A, Thorsteindottir U, Shin S-Y, Richards HB, Soranzo N, Ahmadi KR, Lindgren CM, Stefansson K, Dermitzakis ET, Deloukas P, Spector TD, McCarthy MI (2011) Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet 43:561–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo Y, Fan Y, Zhang J, Lomberk GA, Zhou Z, Sun L, Mathison AJ, Garcia-Barrio MT, Zhang J, Zeng L, Li L, Pennathur S, Willer CJ, Rader DJ, Urrutia R, Chen YE (2015) Perhexiline activates KLF14 and reduces atherosclerosis by modulating ApoA-I production. J Clin Invest 125:3819–3830

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li Y, Xu Y, Jadhav K, Zhu Y, Yin L, Zhang Y (2019) Hepatic Forkhead box protein A3 regulates ApoA-I (apolipoprotein a-I) expression, cholesterol efflux, and Atherogenesis. Arterioscler Thromb Vasc Biol 39:1574–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Park J-G, Xu X, Cho S, Lee A-H (2016) Loss of transcription factor CREBH accelerates diet-induced atherosclerosis in Ldlr−/− mice. Arterioscler Thromb Vasc Biol 36:1772–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lavi S, Bae JH, Rihal CS, Prasad A, Barsness GW, Lennon RJ, Holmes DR, Lerman A (2009) Segmental coronary endothelial dysfunction in patients with minimal atherosclerosis is associated with necrotic core plaques. Heart 95:1525–1530

    Article  CAS  PubMed  Google Scholar 

  31. Monette JS, Hutchins PM, Ronsein GE, Wimberger J, Irwin AD, Tang C, Sara JD, Shao B, Vaisar T, Lerman A, Heinecke JW (2016) Patients with coronary endothelial dysfunction have impaired cholesterol efflux capacity and reduced HDL particle concentration. Circ Res 119:83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Choi B-J, Prasad A, Gulati R, Best PJ, Lennon RJ, Barsness GW, Lerman LO, Lerman A (2013) Coronary endothelial dysfunction in patients with early coronary artery disease is associated with the increase in intravascular lipid core plaque. Eur Heart J 34:2047–2054

    Article  PubMed  PubMed Central  Google Scholar 

  33. Asleh R, Blum S, Kalet-Litman S, Alshiek J, Miller-Lotan R, Asaf R, Rock W, Aviram M, Milman U, Shapira C, Abassi Z, Levy AP (2008) Correction of HDL dysfunction in individuals with diabetes and the haptoglobin 2-2 genotype. Diabetes 57:2794–2800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Asleh R, Levy AP, Levy NS, Asleh A, Goldenstein H, Segol I, Gulati R, Lerman LO, Lerman A (2019) Haptoglobin phenotype is associated with high-density lipoprotein-bound hemoglobin content and coronary endothelial dysfunction in patients with mild nonobstructive coronary artery disease. Arterioscler Thromb Vasc Biol 39:774–786

    Article  CAS  PubMed  Google Scholar 

  35. Reijers JAA, Kallend DG, Malone KE, Jukema JW, Wijngaard PLJ, Burggraaf J, Moerland M (2017) MDCO-216 does not induce adverse Immunostimulation, in contrast to its predecessor ETC-216. Cardiovasc Drugs Ther 31:381–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de Boer IH, Astor BC, Kramer H, Palmas W, Rudser K, Seliger SL, Shlipak MG, Siscovick DS, Tsai MY, Kestenbaum B (2008) Mild elevations of urine albumin excretion are associated with atherogenic lipoprotein abnormalities in the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis 197:407–414

    Article  PubMed  CAS  Google Scholar 

  37. Shao B, Zelnick LR, Wimberger J, Himmelfarb J, Brunzell J, Davidson WS, Snell-Bergeon JK, Bornfeldt KE, de Boer IH, Heinecke JW (2019) Albuminuria, the high-density lipoprotein proteome, and coronary artery calcification in type 1 diabetes mellitus. Arterioscler Thromb Vasc Biol 39:1483–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Y, Yamagishi K, Yatsuya H, Tamakoshi A, Iso H (2012) Smoking cessation and COPD mortality among Japanese men and women: the JACC study. Prev Med 55:639–643

    Article  CAS  PubMed  Google Scholar 

  39. Nagao Y, Hirayama S, Kon M, Sasamoto K, Sugihara M, Hirayama A, Isshiki M, Seino U, Miyazaki O, Miida T (2017) Current smokers with hyperlipidemia lack elevated preβ1-high-density lipoprotein concentrations. J Clin Lipidol 11:242–249

    Article  PubMed  Google Scholar 

  40. Alaupovic P (1996) Significance of apolipoproteins for structure, function, and classification of plasma lipoproteins. Methods Enzymol 263:32–60

    Article  CAS  PubMed  Google Scholar 

  41. Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A (2014) Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med 371:32–41

    Article  PubMed  CAS  Google Scholar 

  42. Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, Lange LA, Lu Y, Tang Z-z, Zhang H, Hindy G, Masca N, Stirrups K, Kanoni S, Do R, Jun G, Hu Y, Kang HM, Xue C, Goel A, Farrall M, Duga S, Merlini PA, Asselta R, Girelli D, Olivieri O, Martinelli N, Yin W, Reilly D, Speliotes E, Fox CS, Hveem K, Holmen OL, Nikpay M, Farlow DN, Assimes TL, Franceschini N, Robinson J, North KE, Martin LW, DePristo M, Gupta N, Escher SA, Jansson J-H, Van Zuydam N, Palmer CNA, Wareham N, Koch W, Meitinger T, Peters A, Lieb W, Erbel R, Konig IR, Kruppa J, Degenhardt F, Gottesman O, Bottinger EP, O'Donnell CJ, Psaty BM, Ballantyne CM, Abecasis G, Ordovas JM, Melander O, Watkins H, Orho-Melander M, Ardissino D, Loos RJF, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Deloukas P, Schunkert H, Wilson JG, Kooperberg C, Rich SS, Tracy RP, Lin D-Y, Altshuler D, Gabriel S, Nickerson DA, Jarvik GP, Cupples LA, Reiner AP, Boerwinkle E, Kathiresan S (2014) Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 371:22–31

    Article  PubMed  CAS  Google Scholar 

  43. Jensen MK, Aroner SA, Mukamal KJ, Furtado JD, Post WS, Tsai MY, Tjønneland A, Polak JF, Rimm EB, Overvad K, McClelland RL, Sacks FM (2018) High-density lipoprotein subspecies defined by presence of apolipoprotein C-III and incident coronary heart disease in four cohorts. Circulation 137:1364–1373

    Article  CAS  PubMed  Google Scholar 

  44. Parish S, Offer A, Clarke R, Hopewell JC, Hill MR, Otvos JD, Armitage J, Collins R (2012) Lipids and lipoproteins and risk of different vascular events in the MRC/BHF heart protection study. Circulation 125:2469–2478

    Article  CAS  PubMed  Google Scholar 

  45. Mora S, Glynn RJ, Ridker PM (2013) High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy. Circulation 128:1189–1197

    Article  CAS  PubMed  Google Scholar 

  46. Lüscher TF, Landmesser U, von Eckardstein A, Fogelman AM (2014) High-density lipoprotein: vascular protective effects, dysfunction, and potential as therapeutic target. Circ Res 114:171–182

    Article  PubMed  CAS  Google Scholar 

  47. Vergeer M, Holleboom AG, Kastelein JJP, Kuivenhoven JA (2010) The HDL hypothesis: does high-density lipoprotein protect from atherosclerosis? J Lipid Res 51:2058–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qi Y, Fan J, Liu J, Wang W, Wang M, Sun J, Liu J, Xie W, Zhao F, Li Y, Zhao D (2015) Cholesterol-overloaded HDL particles are independently associated with progression of carotid atherosclerosis in a cardiovascular disease-free population: a community-based cohort study. J Am Coll Cardiol 65:355–363

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cui, H., Du, Q. (2022). HDL and ASCVD. In: Zheng, L. (eds) HDL Metabolism and Diseases. Advances in Experimental Medicine and Biology, vol 1377. Springer, Singapore. https://doi.org/10.1007/978-981-19-1592-5_8

Download citation

Publish with us

Policies and ethics