Skip to main content

ABCA1, ABCG1, and Cholesterol Homeostasis

  • Chapter
  • First Online:
HDL Metabolism and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1377))

Abstract

Cholesterol is a major component of mammalian cell membranes and plays important structural and functional roles. However, excessive cholesterol accumulation is toxic to cells and constitutes the molecular basis for many diseases, especially atherosclerotic cardiovascular disease. Thus, cellular cholesterol is tightly regulated to maintain a homeostasis. Reverse cholesterol transport (RCT) is thought to be one primary pathway to eliminate excessive cholesterol from the body. The first and rate-limiting step of RCT is ATP-binding cassette (ABC) transports A1 (ABCA1)- and ABCG1-dependent cholesterol efflux. In the process, ABCA1 mediates initial transport of cellular cholesterol to apolipoprotein A-I (apoA-I) for forming nascent high-density lipoprotein (HDL) particles, and ABCG1 facilitates subsequent continued cholesterol efflux to HDL for further maturation. In this chapter, we summarize the roles of ABCA1 and ABCG1 in maintaining cellular cholesterol homoeostasis and discuss the underlying mechanisms by which they mediate cholesterol export.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu XH, Zhang DW, Zheng XL et al (2019) Cholesterol transport system: an integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 73:65–91

    Article  CAS  PubMed  Google Scholar 

  2. Yu XH, Fu YC, Zhang DW et al (2013) Foam cells in atherosclerosis. Clin Chim Acta 424:245–252

    Article  CAS  PubMed  Google Scholar 

  3. Wang G, Gao JH, He LH et al (2020) Fargesin alleviates atherosclerosis by promoting reverse cholesterol transport and reducing inflammatory response. Biochim Biophys Acta Mol Cell Biol Lipids 1865(5):158633

    Article  CAS  PubMed  Google Scholar 

  4. Luo J, Wang X, Jiang X et al (2020) Rutaecarpine derivative R3 attenuates atherosclerosis via inhibiting NLRP3 inflammasome-related inflammation and modulating cholesterol transport. FASEB J 34(1):1398–1411

    Article  CAS  PubMed  Google Scholar 

  5. Yin K, You Y, Swier V et al (2015) Vitamin D protects against atherosclerosis via regulation of cholesterol efflux and macrophage polarization in hypercholesterolemic swine. Arterioscler Thromb Vasc Biol 35(11):2432–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qian H, Zhao X, Cao P et al (2017) Structure of the human lipid exporter ABCA1. Cell 169:1228–1239

    Article  CAS  PubMed  Google Scholar 

  7. Tang CK, Yi GH, Yang JH et al (2004) Oxidized LDL upregulated ATP binding cassette transporter-1 in THP-1 macrophages. Acta Pharmacol Sin 25(5):581–586

    CAS  PubMed  Google Scholar 

  8. Tsuboi T, Lu R, Yonezawa T et al (2020) Molecular mechanism for nobiletin to enhance ABCA1/G1 expression in mouse macrophages. Atherosclerosis 297:32–39

    Article  CAS  PubMed  Google Scholar 

  9. Kumar A, Gupta P, Rana M et al (2020) Role of pyruvate kinase M2 in oxidized LDL-induced macrophage foam cell formation and inflammation. J Lipid Res 61(3):351–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coban N, Gulec C, Ozsait-Selcuk B et al (2017) CYP19A1, MIF and ABCA1 genes are targets of the RORalpha in monocyte and endothelial cells. Cell Biol Int 41(2):163–176

    Article  CAS  PubMed  Google Scholar 

  11. Nishiuchi Y, Murao K, Imachi H et al (2010) Transcriptional factor prolactin regulatory element-binding protein-mediated gene transcription of ABCA1 via 3′,5′-cyclic adenosine-5′-monophosphate. Atherosclerosis 212(2):418–425

    Article  CAS  PubMed  Google Scholar 

  12. Zhao ZW, Zhang M, Chen LY et al (2018) Heat shock protein 70 accelerates atherosclerosis by downregulating the expression of ABCA1 and ABCG1 through the JNK/Elk-1 pathway. Biochim Biophys Acta Mol Cell Biol Lipids 1863(8):806–822

    Article  CAS  PubMed  Google Scholar 

  13. Porsch-Ozcurumez M, Langmann T, Heimerl S et al (2001) The zinc finger protein 202 (ZNF202) is a transcriptional repressor of ATP binding cassette transporter A1 (ABCA1) and ABCG1 gene expression and a modulator of cellular lipid efflux. J Biol Chem 276(15):12427–12433

    Article  CAS  PubMed  Google Scholar 

  14. Zhang ZZ, Chen JJ, Deng WY et al (2021) CTRP1 decreases ABCA1 expression and promotes lipid accumulation through the miR-424-5p/FoxO1 pathway in THP-1 macrophage-derived foam cells. Cell Biol Int 45(11):2226–2237

    Article  CAS  PubMed  Google Scholar 

  15. Nagao S, Murao K, Imachi H et al (2006) Platelet derived growth factor regulates ABCA1 expression in vascular smooth muscle cells. FEBS Lett 580(18):4371–4376

    Article  CAS  PubMed  Google Scholar 

  16. Tamehiro N, Park MH, Hawxhurst V et al (2015) LXR agonism upregulates the macrophage ABCA1/syntrophin protein complex that can bind apoA-I and stabilized ABCA1 protein, but complex loss does not inhibit lipid efflux. Biochemistry 54(46):6931–6941

    Article  CAS  PubMed  Google Scholar 

  17. Zhang M, Li L, Xie W et al (2016) Apolipoprotein A-1 binding protein promotes macrophage cholesterol efflux by facilitating apolipoprotein A-1 binding to ABCA1 and preventing ABCA1 degradation. Atherosclerosis 248:149–159

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Zhou Y, Yu C et al (2015) Paeonol suppresses lipid accumulation in macrophages via upregulation of the ATPbinding cassette transporter A1 and downregulation of the cluster of differentiation 36. Int J Oncol 46(2):764–774

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Jiang B, Liang P et al (2017) Nucleolin protects macrophages from oxLDL-induced foam cell formation through up-regulating ABCA1 expression. Biochem Biophys Res Commun 486(2):364–371

    Article  CAS  PubMed  Google Scholar 

  20. Ramirez CM, Lin CS, Abdelmohsen K et al (2014) RNA binding protein HuR regulates the expression of ABCA1. J Lipid Res 55(6):1066–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fernández-Tussy P, Ruz-Maldonado I, Fernández-Hernando C (2021) MicroRNAs and circular RNAs in lipoprotein metabolism. Curr Atheroscler Rep 23(7):33

    Article  PubMed  CAS  Google Scholar 

  22. Adorni MP, Zimetti F, Billheimer JT et al (2007) The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res 48:2453–2462

    Article  CAS  PubMed  Google Scholar 

  23. Oram JF (2000) Tangier disease and ABCA1. Biochim Biophys Acta 1529:321–330

    Article  CAS  PubMed  Google Scholar 

  24. Wang MD, Franklin V, Marcel YL (2007) In vivo reverse cholesterol transport from macrophages lacking ABCA1 expression is impaired. Arterioscler Thromb Vasc Biol 27:1837–1842

    Article  CAS  PubMed  Google Scholar 

  25. Singaraja RR, Fievet C, Castro G et al (2002) Increased ABCA1 activity protects against atherosclerosis. J Clin Invest 110(1):35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yvan-Charvet L, Welch C, Pagler TA et al (2008) Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation 118(18):1837–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stamatikos A, Dronadula N, Ng P et al (2019) ABCA1 overexpression in endothelial cells in vitro enhances apoAI-mediated cholesterol efflux and decreases inflammation. Hum Gene Ther 30(2):236–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang M, Zhao GJ, Yin K et al (2018) Apolipoprotein A-1 binding protein inhibits inflammatory signaling pathways by binding to apolipoprotein A-1 in THP-1 macrophages. Circ J 82(5):1396–1404

    Article  CAS  PubMed  Google Scholar 

  29. Li L, Xu L, Chen W et al (2018) Reduced annexin A1 secretion by ABCA1 causes retinal inflammation and ganglion cell apoptosis in a murine glaucoma model. Front Cell Neurosci 12:347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagata KO, Nakada C, Kasai RS et al (2013) ABCA1 dimer-monomer interconversion during HDL generation revealed by single-molecule imaging. Proc Natl Acad Sci U S A 110(13):5034–5039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ishigami M, Ogasawara F, Nagao K et al (2018) Temporary sequestration of cholesterol and phosphatidylcholine within extracellular domains of ABCA1 during nascent HDL generation. Sci Rep 8(1):6170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Fielding PE, Nagao K, Hakamata H et al (2000) A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1. Biochemistry 39(46):14113–14120

    Article  CAS  PubMed  Google Scholar 

  33. Wang N, Silver DL, Thiele C et al (2001) ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J Biol Chem 276(26):23742–23747

    Article  CAS  PubMed  Google Scholar 

  34. Smith JD, Le Goff W, Settle M et al (2004) ABCA1 mediates concurrent cholesterol and phospholipid efflux to apolipoprotein A-I. J Lipid Res 45(4):635–644

    Article  CAS  PubMed  Google Scholar 

  35. Liu M, Mei X, Herscovitz H et al (2019) N-terminal mutation of apoA-I and interaction with ABCA1 reveal mechanisms of nascent HDL biogenesis. J Lipid Res 60(1):44–57

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi Y, Smith JD (1999) Cholesterol efflux to apolipoprotein AI involves endocytosis and resecretion in a calcium-dependent pathway. Proc Natl Acad Sci U S A 96(20):11358–11363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen W, Sun Y, Welch C et al (2001) Preferential ATP-binding cassette transporter A1-mediated cholesterol efflux from late endosomes/lysosomes. J Biol Chem 276(47):43564–43569

    Article  CAS  PubMed  Google Scholar 

  38. Yu XH, Chen JJ, Deng WY et al (2020) Biochanin a mitigates atherosclerosis by inhibiting lipid accumulation and inflammatory response. Oxidative Med Cell Longev 2020:8965047

    Google Scholar 

  39. Wang D, Yan X, Xia M et al (2014) Coenzyme Q10 promotes macrophage cholesterol efflux by regulation of the activator protein-1/miR-378/ATP-binding cassette transporter G1-signaling pathway. Arterioscler Thromb Vasc Biol 34(9):1860–1870

    Article  PubMed  CAS  Google Scholar 

  40. Mo ZC, Xiao J, Tang SL et al (2014) Advanced oxidation protein products exacerbates lipid accumulation and atherosclerosis through downregulation of ATP-binding cassette transporter A1 and G1 expression in apolipoprotein E knockout mice. Circ J 78(11):2760–2770

    Article  CAS  PubMed  Google Scholar 

  41. Zhao GJ, Tang SL, Lv YC et al (2014) NF-kappaB suppresses the expression of ATP-binding cassette transporter A1/G1 by regulating SREBP-2 and miR-33a in mice. Int J Cardiol 171(3):e93–e95

    Article  PubMed  Google Scholar 

  42. Meurs I, Lammers B, Zhao Y et al (2012) The effect of ABCG1 deficiency on atherosclerotic lesion development in LDL receptor knockout mice depends on the stage of atherogenesis. Atherosclerosis 221(1):41–47

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Collins HL, Ranalletta M et al (2007) Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest 117(8):2216–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yvan-Charvet L, Ranalletta M, Wang N et al (2007) Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest 117(12):3900–3908

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Westerterp M, Tsuchiya K, Tattersall IW et al (2016) Deficiency of ATP-binding cassette transporters A1 and G1 in endothelial cells accelerates atherosclerosis in mice. Arterioscler Thromb Vasc Biol 36(7):1328–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vaughan AM, Oram JF (2005) ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins. J Biol Chem 280(34):30150–30157

    Article  CAS  PubMed  Google Scholar 

  47. Tarling EJ, Edwards PA (2011) ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc Natl Acad Sci U S A 108(49):19719–19724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Neufeld EB, O’Brien K, Walts AD et al (2014) Cellular localization and trafficking of the human ABCG1 transporter. Biology (Basel) 3(4):781–800

    Google Scholar 

  49. Getz GS, Reardon CA (2011) Apolipoprotein A-I and A-I mimetic peptides: a role in atherosclerosis. J Inflamm Res 4:83–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Palgunachari MN, Mishra VK, Lund-Katz S et al (1996) Only the two end helixes of eight tandem amphipathic helical domains of human apo A-I have significant lipid affinity. Implications for HDL assembly. Arterioscler Thromb Vasc Biol 16(2):328–338

    Article  CAS  PubMed  Google Scholar 

  51. Mishra VK, Palgunachari MN, Datta G et al (1998) Studies of synthetic peptides of human apolipoprotein A-I containing tandem amphipathic alpha-helixes. Biochemistry 37(28):10313–10324

    Article  CAS  PubMed  Google Scholar 

  52. Tiniakou I, Kanaki Z, Georgopoulos S et al (2015) Natural human apoA-I mutations L141RPisa and L159RFIN alter HDL structure and functionality and promote atherosclerosis development in mice. Atherosclerosis 243(1):77–85

    Article  CAS  PubMed  Google Scholar 

  53. Zhang X, Zhu X, Chen B (2010) Inhibition of collar-induced carotid atherosclerosis by recombinant apoA-I cysteine mutants in apoE-deficient mice. J Lipid Res 51(12):3434–3442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Flynn R, Qian K, Tang C et al (2011) Expression of apolipoprotein A-I in rabbit carotid endothelium protects against atherosclerosis. Mol Ther 19(10):1833–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wacker BK, Dronadula N, Zhang J et al (2017) Local vascular gene therapy with apolipoprotein A-I to promote regression of atherosclerosis. Arterioscler Thromb Vasc Biol 37(2):316–327

    Article  CAS  PubMed  Google Scholar 

  56. Mo ZC, Ren K, Liu X et al (2016) A high-density lipoprotein-mediated drug delivery system. Adv Drug Deliv Rev 106(Pt A):132–147

    Article  CAS  PubMed  Google Scholar 

  57. Jonas A (2000) Lecithin cholesterol acyltransferase. Biochim Biophys Acta 1529(1–3):245–256

    Article  CAS  PubMed  Google Scholar 

  58. Rye KA, Barter PJ (2004) Formation and metabolism of prebeta-migrating, lipid-poor apolipoprotein A-I. Arterioscler Thromb Vasc Biol 24(3):421–428

    Article  CAS  PubMed  Google Scholar 

  59. Gordon SM, Remaley AT (2017) High density lipoproteins are modulators of protease activity: implications in inflammation, complement activation, and atherothrombosis. Atherosclerosis 259:104–113

    Article  CAS  PubMed  Google Scholar 

  60. Choi HY, Hafiane A, Schwertani A, Genest J (2017) High-density lipoproteins: biology, epidemiology, and clinical management. Can J Cardiol 33:325–333

    Article  PubMed  Google Scholar 

  61. Hu J, Xi D, Zhao J, Luo T, Liu J, Lu H et al (2016) High-density lipoprotein and inflammation and its significance to atherosclerosis. Am J Med Sci 352:408–415

    Article  PubMed  Google Scholar 

  62. Tardy C, Goffinet M, Boubekeur N et al (2014) CER-001, a HDL-mimetic, stimulates the reverse lipid transport and atherosclerosis regression in high cholesterol diet-fed LDL-receptor deficient mice. Atherosclerosis 232(1):110–118

    Article  CAS  PubMed  Google Scholar 

  63. Sun H, Shen J, Liu T et al (2014) Heat shock protein 65 promotes atherosclerosis through impairing the properties of high density lipoprotein. Atherosclerosis 237(2):853–861

    Article  CAS  PubMed  Google Scholar 

  64. Assmann G, Schulte H, von Eckardstein A et al (1996) High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport. Atherosclerosis 124(Suppl):S11–S20

    Article  CAS  PubMed  Google Scholar 

  65. Barter P, Gotto AM, LaRosa JC et al (2007) HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med 357(13):1301–1310

    Article  CAS  PubMed  Google Scholar 

  66. Ding D, Li X, Qiu J et al (2014) Serum lipids, apolipoproteins, and mortality among coronary artery disease patients. Biomed Res Int 2014:709756

    PubMed  PubMed Central  Google Scholar 

  67. Schwartz GG, Olsson AG, Abt M et al (2012) Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med 367(22):2089–2099

    Article  CAS  PubMed  Google Scholar 

  68. Keech A, Simes RJ, Barter P et al (2005) Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366(9500):1849–1861

    Article  CAS  PubMed  Google Scholar 

  69. Corsetti JP, Ryan D, Rainwater DL et al (2010) Cholesteryl ester transfer protein polymorphism (TaqIB) associates with risk in postinfarction patients with high C-reactive protein and high-density lipoprotein cholesterol levels. Arterioscler Thromb Vasc Biol 30(8):1657–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Asztalos BF, Cupples LA, Demissie S et al (2004) High-density lipoprotein subpopulation profile and coronary heart disease prevalence in male participants of the Framingham offspring study. Arterioscler Thromb Vasc Biol 24(11):2181–2187

    Article  CAS  PubMed  Google Scholar 

  71. Asztalos BF, Collins D, Cupples LA et al (2005) Value of high-density lipoprotein (HDL) subpopulations in predicting recurrent cardiovascular events in the veterans affairs HDL intervention trial. Arterioscler Thromb Vasc Biol 25(10):2185–2191

    Article  CAS  PubMed  Google Scholar 

  72. Khera AV, Cuchel M, de la Llera-Moya M et al (2011) Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 364(2):127–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Saleheen D, Scott R, Javad S et al (2015) Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes Endocrinol 3(7):507–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rohatgi A, Khera A, Berry JD et al (2014) HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med 371(25):2383–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Asztalos BF, de la Llera-Moya M, Dallal GE et al (2005) Differential effects of HDL subpopulations on cellular ABCA1- and SR-BI-mediated cholesterol efflux. J Lipid Res 46(10):2246–2253

    Article  CAS  PubMed  Google Scholar 

  76. Asztalos BF, Horvath KV, Mehan M et al (2017) Influence of HDL particles on cell-cholesterol efflux under various pathological conditions. J Lipid Res 58(6):1238–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Asztalos BF, Horvath KV, Schaefer EJ (2018) HDL (high-density lipoprotein) particles, cell-cholesterol efflux, and coronary heart disease risk: the prebeta-1 paradox. Arterioscler Thromb Vasc Biol 38(9):2007–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, XH., Tang, CK. (2022). ABCA1, ABCG1, and Cholesterol Homeostasis. In: Zheng, L. (eds) HDL Metabolism and Diseases. Advances in Experimental Medicine and Biology, vol 1377. Springer, Singapore. https://doi.org/10.1007/978-981-19-1592-5_7

Download citation

Publish with us

Policies and ethics