Skip to main content

Metrological Aspects of Blood Pressure Measurement

  • Living reference work entry
  • First Online:
Handbook of Metrology and Applications

Abstract

Blood pressure (BP) is an important physiological parameter used in the diagnosis of many life-threatening diseases such as heart attack, ischemic stroke, hypertension, vascular disease, hypotension, and many others. It is directly connected to human life, it plays an important role in the diagnosis and monitoring of various health ailments. Accurate and precise BP measurement is always a priority for both researchers and medical practitioners. With recent technological advancements, the issue of accurate measurements, standardization of techniques, and efforts toward adopting some uniform methods remain debatable, particularly traceability in dynamic mode. There are numerous types of BP measuring devices in the market. The accuracy of these devices is always an unresolved issue for researchers, medical practitioners, and metrologists. Several national and international standards recommend methods for calibrating these devices, but very few devices/systems/instruments are available to calibrate these devices convincingly in SI traceable units. This chapter provides an in-depth explanation of various noninvasive BP measuring techniques as well as available national and international standards. Some recent advances in BP measurement, as well as challenges addressed and challenges ahead in their calibration, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amoore JN, Lemesre Y, Murray IC, Vacher E, Mieke S, King ST, Smith FE, Murray A (2007) Validation of oscillometric noninvasive blood pressure measurement devices using simulators. Blood Press Monit 12:251–253

    Article  Google Scholar 

  • Amoore JN, Lemesre Y, Murray IC, Mieke S, King ST, Smith FE, Murray A (2008) Automatic blood pressure measurement: the oscillometric waveform shape is a potential contributor to differences between oscillometric and auscultatory pressure measurements. J Hypertens 26:35–43

    Article  Google Scholar 

  • Avolio A, Cox J, Louka K, Shirbani F, Tan I, Qasem A, Butlin M (2022) Challenges presented by cuffless measurement of blood pressure if adopted for diagnosis and treatment of hypertension. Pulse:1–12

    Google Scholar 

  • Babbs CF (2015) The origin of Korotkoff sounds and the accuracy of auscultatory blood pressure measurements. J Am Soc Hypertens 9:935–950. e933

    Article  Google Scholar 

  • Bailey RH, Bauer JH (1993) A review of common errors in the indirect measurement of blood pressure: sphygmomanometry. Arch Intern Med 153:2741–2748

    Article  Google Scholar 

  • Beaney T et al (2020) May measurement month 2019: the global blood pressure 10 screening campaign of the International Society of Hypertension. Hypertension 11:12

    Google Scholar 

  • Booth J (1977) A short history of blood pressure measurement. Proc R Soc Med 70:793–799

    Google Scholar 

  • Carek A, Holz C (2018) Naptics: convenient and continuous blood pressure monitoring during sleep. ACM Interact Mob Wearable Ubiquitous Technol 2(3):1–22

    Article  Google Scholar 

  • Chen IJ, Chang MY, Chiao SL, Chen JL, Yu CC, Yang SH, Liu JM, Hung CC, Yang RC, Chang HC, Hsu CH, Fang JT (2012) Korean red ginseng improves blood pressure stability in patients with intradialytic hypotension. Evid Based Complement Alternat Med 2012:1–9. https://doi.org/10.1155/2012/595271

  • Cluett JL, Ishak AM, Mukamal KJ, Juraschek SP (2021) A novel protocol to assess the impact of prescription stimulants on blood pressure in adults using ambulatory blood pressure monitoring. J Clin Hypertens 23(6):1264–1268

    Article  Google Scholar 

  • Drzewiecki GM, Melbin J, Noordergraaf A (1983) Arterial tonometry: review and analysis. J Biomech 16:141–152

    Article  Google Scholar 

  • Egan BM et al (2019) The global burden of hypertension exceeds 1.4 billion people: should a systolic blood pressure target below 130 become the universal standard? J Hypertens 37(6):1148–1153. 9

    Article  Google Scholar 

  • Elgendi M, Fletcher R, Liang Y, Howard N, Lovell NH, Abbott D, Lim K, Ward R (2019) The use of photoplethysmography for assessing hypertension. npj Digital Med 2:1–11

    Article  Google Scholar 

  • Elseed A, Shinebourne E, Joseph M (1973) Assessment of techniques for measurement of blood pressure in infants and children. Arch Dis Child 48:932

    Article  Google Scholar 

  • Forouzanfar MH et al (2017) Global burden of hypertension and systolic blood pressure 5 of at least 110 to 115 mm Hg, 1990–2015. JAMA 317(2):165–182

    Article  Google Scholar 

  • Franklin SS, Gustin W, Wong ND, Larson MG, Weber MA, Kannel WB, Levy D (1997) Hemodynamic patterns of age-related changes in blood pressure. The Framingham Heart Study. Circulation 96:308–315

    Article  Google Scholar 

  • Gakidou E et al (2017) Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390(10100):1345–1422

    Article  Google Scholar 

  • Holz C, Wang EJ (2017) Glabella: continuously sensing blood pressure behavior using an unobtrusive wearable device. ACM Interact Mob Wearable Ubiquitous Technol 1(3):1–23

    Article  Google Scholar 

  • Hung C-C, Su M-C, Chen S-J, Lee H-T (2007) New simulator that can regenerate real human blood pressure waveforms. In: Proceeding of international medical informatics symposium in Taiwan, 2007

    Google Scholar 

  • Hwang KO, AiteburemeAigbe H-HJ, Jackson VC, Sedlock EW (2018) Barriers to accurate blood pressure measurement in the medical office. J Prim Care Community Health 9:2150132718816929

    Article  Google Scholar 

  • I.S. Association (2014) IEEE standard for wearable cuffless blood pressure measuring devices. IEEE Std 1708–2014

    Google Scholar 

  • I.T.S. 3 (2020) ISO/TS 81060-5:2020-requirements for the repeatability and reproducibility of NIBP simulators for testing of automated non-invasive sphygmomanometers. International Organization for Standardization (ISO)

    Google Scholar 

  • Indian Standard IS 3390 (1988) Specification and requirements for Sphygmomanometers, Mercurial, 1988 and reaffirmed in 2006

    Google Scholar 

  • Indian Standard IS 7652 (1988) Specification and requirements for Sphygmomanometer, Aneroid Type, 1988 and reaffirmed in 2006

    Google Scholar 

  • International Recommendation OIML R 16-1 (2002) Non-invasive mechanical sphygmomanometers. Organisation internationale de metrologielegale, Bureau International de M’etrologieL’egale, Pariz,

    Google Scholar 

  • International Recommendation OIML R 16-2 (2002) Non-invasive automated sphygmomanometers. Organisation internationale de metrologielegale, Bureau International de M’etrologieL’egale, Pariz

    Google Scholar 

  • Jazbinsek V, Luznik J, Mieke S, Trontelj Z (2010) Influence of different presentations of oscillometric data on automatic determination of systolic and diastolic pressures. Ann Biomed Eng 38:774–787

    Article  Google Scholar 

  • Jhalani J, Goyal T, Clemow L, Schwartz JE, Pickering TG, Gerin W (2005) Anxiety and outcome expectations predict the white-coat effect. Blood Press Monit 10:317–319

    Article  Google Scholar 

  • Khalid SG, Liu H, Zia T, Zhang J, Chen F, Zheng D (2020) Cuffless blood pressure estimation using single channel photoplethysmography: a two-step method. IEEE Access 8:58146–58154

    Article  Google Scholar 

  • Kim YT, Chung HJ, Park BR, Kim YY, Lee JH, Kang DR, Kim JY, Lee MY, Lee JY (2020) Risk of Cardiovascular Disease, Chronic Kidney Disease, Cerebrovascular Disease, and Cardiovascular Mortality According to Blood Pressure Categories in Diabetes Patients: A Population-Based Study (1/27/2020). Available at SSRN: https://ssrn.com/abstract=3526315 or https://doi.org/10.2139/ssrn.3526315

  • Kitagawa N, Ushigome E, Kitagawa N, Ushigome H, Yokota I, Nakanishi N, Hamaguchi M, Asano M, Yamazaki M, Fukui M (2022) Diabetic nephropathy ameliorated in patients with normal home blood pressure compared to those with isolated high home systolic blood pressure: a 5-year prospective cohort study among patients with type 2 diabetes mellitus. Diab Vasc Dis Res 19(3):14791641221098193

    Article  Google Scholar 

  • Kovell LC, Maxner B, Shankara S, Lemon SC, Person SD, Moore Simas TA, Turkson-Ocran RA, McManus DD, Juraschek SP (2022) Home blood pressure monitoring in women of child-bearing age with hypertension from 2009–2014. Am J Hypertens:hpac055. https://doi.org/10.1093/ajh/hpac055

  • Kumar R, Dubey PK, Zafer A, Kumar A, Yadav S (2020) Development of remote wireless environmental conditions measurement monitoring and recording device for metrological and other scientific applications. MAPAN 35:193–199

    Article  Google Scholar 

  • Kumar R, Dubey PK, Zafer A, Kumar A, Yadav S (2021a) Design and development of a temperature-compensated body mass index measuring system. MAPAN 36(2):287–294

    Article  Google Scholar 

  • Kumar R, Dubey PK, Zafer A, Kumar A, Yadav S (2021b) Past, present and future of blood pressure measuring instruments and their calibration. Measurement 172:108845

    Article  Google Scholar 

  • Landry C, Peterson SD, Arami A (2022) A fusion approach to improve accuracy and estimate uncertainty in cuffless blood pressure monitoring. Sci Rep 12(1):1–10

    Article  Google Scholar 

  • Le T, Ellington F, Lee T-Y, Vo K, Khine M, Krishnan SK, Dutt N, Cao H (2020) Continuous non-invasive blood pressure monitoring: a methodological review on measurement techniques. IEEE Access 8:212478–212498

    Article  Google Scholar 

  • Leenen FHH, McInnis NH, Fodor G (2010) Obesity and the prevalence and management of hypertension in Ontario, Canada. Am J Hypertens 34(9):1000–1006

    Article  Google Scholar 

  • Liu W-C, Hung C-C, Chen S-C, Yeh S-M, Lin M-Y, Chiu Y-W, Kuo M-C, Chang JM, Hwang S-J, Chen H-C (2012) Association of hyperuricemia with renal outcomes, cardiovascular disease, and mortality. Clin J Am Soc Nephrol 7:541–548

    Article  Google Scholar 

  • Liu K, Mu C, Wang C, Cheng Y (2018) Design of wearable system for hand function monitoring. In: Proc. 3rd Int. Forum Energy. Environ Sci. Mater. (IFEESM), Feb 2018

    Google Scholar 

  • Lubin M, Vray D, Bonnet S (2020) Blood pressure measurement by coupling an external pressure and photo-plethysmographic signals. In: 2020 42nd annual international conference of the IEEE engineering in medicine & biology society (EMBC). IEEE, pp 4996–4999. Montreal, QC, Canada

    Google Scholar 

  • Marey E-J (1876) Physiologie expérimentale: travaux du laboratoire. Paris: Masson, 1876–1880

    Google Scholar 

  • Mauck GW, Smith CR, Geddes LA, Bourland JD (1980) The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure–part ii. Journal of Biomechanical Engineering 102(1):28–33

    Google Scholar 

  • Maxwell M, Schroth P, Waks A, Karam M, Dornfeld L (1982) Error in blood-pressure measurement due to incorrect cuff size in obese patients. Lancet 320:33–36

    Article  Google Scholar 

  • Miao F, Cheng Y, He Y, He Q, Li Y (2015) A wearable context-aware ecg monitoring system integrated with built-in kinematic sensors of the smartphone. Sensors 15(5):11465–11484

    Article  Google Scholar 

  • Mion D, Pierin AMG (1998) How accurate are sphygmomanometers? J Hum Hypertens 12:245–248

    Article  Google Scholar 

  • Mitchell PL, Parlin RW, Blackburn H (1964) Effect of vertical displacement of the arm on indirect blood-pressure measurement. N Engl J Med 271:72–74

    Article  Google Scholar 

  • Molhoek G, Wesseling K, Settels J, Van Vollenhoven E, Weeda H, De Wit B, Arntzenius A (1984) Evaluation of the Penaz servo-plethysmo-manometer for the continuous, non-invasive measurement of finger blood pressure. Basic Res Cardiol 79:598–609

    Article  Google Scholar 

  • Netea RT, Smits P, Lenders JW, Thien T (1998) Does it matter whether blood pressure measurements are taken with subjects sitting or supine? J Hypertens 16:263–268

    Article  Google Scholar 

  • Netea R, Elving L, Lutterman J, Thien T (2002) Body position and blood pressure measurement in patients with diabetes mellitus. J Intern Med 251:393–399

    Article  Google Scholar 

  • Netea R, Lenders J, Smits P, Thien T (2003) Both body and arm position significantly influence blood pressure measurement. J Hum Hypertens 17:459–462

    Article  Google Scholar 

  • O’Brien E, Pickering T, Asmar R, Myers M, Parati G, Staessen J, Mengden T, Imai Y, Waeber B, Palatini P (2002) Working Group on Blood Pressure Monitoring of the European Society of Hypertension International Protocol for validation of blood pressure measuring devices in adults. Blood Press Monit 7:3–17

    Article  Google Scholar 

  • O’Rourke MF (2002) From theory into practice: arterial haemodynamics in clinical hypertension. J Hypertens 20:1901–1915

    Article  Google Scholar 

  • Papadopoulos G, Vescio G, Mieke S (1993) Does the photoplethysmographic technique show an improvement in the measurement of the indirect blood pressure in intensive care patients? Anaesthesist 42:23–28

    Google Scholar 

  • Penaz J (1973) Photoelectric measurement of blood pressure, volume and flow in the finger. In: Digest of the 10th international conference on medical and biological engineering, p 104

    Google Scholar 

  • Pickering TG (1993) Blood pressure variability and ambulatory monitoring. Curr Opin Nephrol Hypertens 2:380–385

    Article  Google Scholar 

  • Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, Jones DW, Kurtz T, Sheps SG, Roccella EJ (2005) Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension 45:142–161

    Article  Google Scholar 

  • Riedel W, Mieke S, Seemann R, Ittermann B (2011) A simulator for oscillometric blood-pressure signals to test automated noninvasive sphygmomanometers. Rev Sci Instrum 82:024303

    Article  Google Scholar 

  • NCD Risk Factor Collaboration (NCD-RisC) (2017) Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 389(10064):37. 4

    Google Scholar 

  • Sareen P, Saxena K, Sareen B, Taneja B (2012) Comparison of arm and calf blood pressure. Indian J Anaesth 56:83

    Article  Google Scholar 

  • Schutte AE, Kollias A, Stergiou GS (2022) Blood pressure and its variability: classic and novel measurement techniques. Nat Rev Cardiol:1–12. https://doi.org/10.1038/s41569-022-00690-0

  • Senador D, Azar T, Fricke K, Reynolds C, Minic Z (2022) Continuous ultrasonic transit-time blood flow and arterial blood pressure monitoring in freely moving Sprague-Dawley rats via implantable telemetry. FASEB J 36. https://doi.org/10.1096/fasebj.2022.36.S1.R2725

  • Sesler JM, Munroe WP, McKenney JM (1991) Clinical evaluation of a finger oscillometric blood pressure device. 1310–1314

    Google Scholar 

  • Siaron KB, Cortes MX, Stutzman SE, Venkatachalam A, Ahmed KM, Olson DM (2020) Blood pressure measurements are site dependent in a cohort of patients with neurological illness. Sci Rep 10:1–7

    Article  Google Scholar 

  • Stergiou GS, Alpert BS, Mieke S, Wang J, O’Brien E (2018) Validation protocols for blood pressure measuring devices in the 21st century. J Clin Hypertens 20:1096–1099

    Article  Google Scholar 

  • Van Egmond J, Hasenbos M, Crul J (1985) Invasive v. non-invasive measurement of arterial pressure: comparison of two automatic methods and simultaneously measured direct intra-arterial pressure. BJA: Br J Anaesth 57:434–444

    Article  Google Scholar 

  • Van Montfrans G, Van Der Hoeven G, Karemaker J, Wieling W, Dunning A (1987) Accuracy of auscultatory blood pressure measurement with a long cuff. Br Med J (Clin Res Ed) 295:354–355

    Article  Google Scholar 

  • Verberk WJ, Mieke S (2016) Are blood pressure monitors affected by high altitude? Heart Asia 8(2):52–53

    Google Scholar 

  • Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Zampi I, Gattobigio R, Sacchi N, Porcellati C (1995) White coat hypertension and white coat effect similarities and differences. Am J Hypertens 8:790–798

    Article  Google Scholar 

  • Wang EJ, Zhu J, Jain M, Lee T-J, Saba E, Nachman L, Patel SN (2018) Seismo: blood pressure monitoring using built-in smartphone accelerometer and camera. In: Proc. CHI Conf. Hum. Factors Comput Syst (CHI), Apr 2018, p 425

    Google Scholar 

  • Webster J, Newnham D, Petrie J, Lovell H (1984) Influence of arm position on measurement of blood pressure. Br Med J (Clin Res Ed) 288:1574–1575

    Article  Google Scholar 

  • WHO (2020) WHO technical specifications for automated non-invasive blood pressure measuring devices with cuff. WHO medical device technical series

    Google Scholar 

  • Wu T, Wu F, Qiu C, Redoute J-M, Yuce MR (2020) A rigid-flex wearable health monitoring sensor patch for IoT-connected healthcare applications. IEEE Internet Things J

    Google Scholar 

  • Xing X, Ma Z, Shengkai X, Zhang M, Zhao W, Song M, Dong W-F (2021) Blood pressure assessment with in-ear photoplethysmography. Physiol Meas 42(10):105009

    Article  Google Scholar 

  • Zakrzewski AM, Huang AY, Zubajlo R, Anthony BW (2018) Real-time blood pressure estimation from force-measured ultrasound. IEEE Trans Biomed Eng 65(11):2405–2416

    Article  Google Scholar 

  • Zheng D, Amoore JN, Mieke S, Murray A (2011) Estimation of mean arterial pressure from the oscillometric cuff pressure: comparison of different techniques. Med Biol Eng Comput 49:33–39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Kumar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kumar, R., Dubey, P.K., Yadav, S. (2022). Metrological Aspects of Blood Pressure Measurement. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-1550-5_98-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1550-5_98-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1550-5

  • Online ISBN: 978-981-19-1550-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics