Skip to main content

Antennas for mm-wave MIMO RADAR

Design and Integration Challenges for Automotive Applications

  • Living reference work entry
  • First Online:
Handbook of Metrology and Applications

Abstract

Multiple-input Multiple-output (MIMO) antennas are one of the key enabling technologies for the modern (4G-LTE, 5G) cellular communication base stations/hand-sets/wireless access points (WAPs) and will continue to dominate the implementation of future generation wireless technologies (6G and Beyond). MIMO systems provide significant advantages over conventional SISO (Single-input Single-Output) systems, especially in combating multipath fading effects in NLOS (Non-Line of Sight) propagation scenario, leading to enhanced channel capacity (data-rate), lower bit-error probability, and better signal-to-interference-noise ratio (SINR). Transcending from cellular and WLAN (Wireless Local Area Network) domain, research on MIMO techniques are currently emerging significantly in the context of RADAR (Radio Detection and Ranging) systems as well. While the classical RADAR technology has been well-established in the context of defense applications (since World War II) and weather-monitoring systems, its integration with MIMO technology has opened new directions for RADAR usage in many industrial and civilian applications.

In this chapter, we first describe the standard operating principles of MIMO RADARs and elaborate upon their advantages over conventional phased array RADARs. Among the various application environments, MIMO RADARs have assumed a crucial role, especially in automotive applications like advanced driver assistance systems (ADAS). Subsequently, we describe the state-of-the-art mm-wave MIMO antennas available in the open literature for automotive systems. Besides highlighting the antenna design aspects, we also critically examine the different integration challenges when a RADAR antenna system is installed inside a vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arnieri E, Greco F, Boccia L, Amendola G (2018) A reduced size planar grid array antenna for automotive radar sensors. IEEE Antennas Wirel Propag Lett 17(12):2389–2393

    Article  ADS  Google Scholar 

  • Artemenko A, Mozharovskiy A, Maltsev A, Maslennikov R, Sevastyanov A, Ssorin V (2013) Experimental characterization of E-band two-dimensional electronically beam-steerable integrated lens antennas. IEEE Antennas Wirel Propag Lett 12:1188–1191

    Article  ADS  Google Scholar 

  • Beer S, Adamiuk G, Zwick T (2009) Novel antenna concept for compact millimeter-wave automotive RADAR sensors. IEEE Antennas Wirel Propag Lett 8:771–774

    Article  ADS  Google Scholar 

  • Binzer T, Klar M, Gross V (2007) Development of 77 GHz RADAR lens antennas for automotive applications based on given requirements. In: 2007 2nd international ITG conference on antennas, pp 205–209

    Google Scholar 

  • Bloecher H-L, Sailer A, Rollmann G, Dickmann J (2009) 79 GHz UWB automotive short-range RADAR – spectrum allocation and technology trends. Adv Radio Sci 7:61–65

    Article  ADS  Google Scholar 

  • Blöecher H-L, Andres M, Fischer C, Sailer A, Goppelt M, Dickmann J (2012) Impact of system parameter selection on RADAR sensor performance in automotive applications. Adv Radio Sci 10:33–37

    Article  ADS  Google Scholar 

  • Dash JC, Sarkar D (2021) Impacts on automotive MIMO RADAR performance due to permittivity variation of bumper material: insights through bi-directional loss and antenna array ambiguity function. Accepted for presentation in 2021 IEEE IMaRC

    Google Scholar 

  • Dash JC, Kharche S, Mukherjee J, Dhoot V, Makanaboyina R (2019) A model for equivalent loss tangent of multilayered media for automotive RADAR applications. In: 2019 13th European conference on antennas and propagation (EuCAP), pp 1–4

    Google Scholar 

  • Dash JC, Darkar D, Antar Y (2021a) Design of series-fed patch array with modified binomial coefficients for MIMO RADAR application. Accepted for presentation in 2021 IEEE AP-S symposium on antennas and propagation and USNC-URSI radio science meeting

    Google Scholar 

  • Dash JC et al (2021b) Performance evaluation of automotive RADAR in the presence of bumper with multiple paint layers using bidirectional loss model. In: 2021 15th European conference on antennas and propagation (EuCAP), pp 1–5

    Google Scholar 

  • Dash JC, Sarkar D, Antar YMM (2022a) Design of a 2D MIMO radar antenna for 77 GHz automotive application. In: IEEE international symposium on antennas and propagation and USNC-URSI radio science meeting, Denver, Colorado, USA, 10–15 July, 2022

    Google Scholar 

  • Dash JC, Sarkar D, Antar Y (2022b) Effect of painted bumper on automotive MIMO RADAR performance study using bi-directional loss and antenna array ambiguity function. In: IEEE international symposium on antennas and propagation and USNC-URSI radio science meeting, Denver, Colorado, USA, 10–15 July, 2022

    Google Scholar 

  • Engels F, Heidenreich P, Zoubir AM, Jondral FK, Wintermantel M (2017) Advances in automotive RADAR: a framework on computationally efficient high-resolution frequency estimation. IEEE Signal Process Mag 34(2):36–46

    Article  ADS  Google Scholar 

  • Fishler E, Haimovich A, Blum R, Chizhik D, Cimini L, Valenzuela R (2004) MIMO RADAR: an idea whose time has come. In: Proceedings of IEEE RADAR Conference, Philadelphia, PA, pp 71–78

    Google Scholar 

  • Front RADAR sensor (2020) [Online]. Available: https://bosch.com

  • Haimovich AM, Blum RS, Cimini LJ (2008) MIMO RADAR with widely separated antennas. IEEE Signal Process Mag 25(1):116–129

    Article  ADS  Google Scholar 

  • Hallbjorner P, He Z, Bruce S, Cheng S (2012) Low-profile 77-GHz lens antenna with array feeder. IEEE Antennas Wirel Propag Lett 11:205–207

    Article  ADS  Google Scholar 

  • Hasch J, Topak E, Schnabel R, Zwick T, Weigel R, Waldschmidt C (2012) A millimeter-wave technology for automotive RADAR sensors in the 77 GHz frequency band. IEEE Trans Microw Theory Techn 60(3):845–860

    Article  ADS  Google Scholar 

  • Imbert M, Papió A, De Flaviis F, Jofre L, Romeu J (2015) Design and performance evaluation of a dielectric flat lens antenna for millimeter-wave applications. IEEE Antennas Wirel Propag Lett 14:342–345

    Article  ADS  Google Scholar 

  • Jokela M, Kutila M, Pyykönen P (2019) Testing and validation of automotive point-cloud sensors in adverse weather conditions. Appl Sci 9(11):Art. no. 2341

    Article  Google Scholar 

  • Kucharski M, Ergintav A, Ahmad WA, Krstić M, Ng HJ, Kissinger D (2019) A scalable 79-GHz RADAR platform based on single-channel transceivers. IEEE Trans Microwave Theory Techn 67(9):3882–3896

    Article  ADS  Google Scholar 

  • Lee J, Li Y, Hung M, Huang S (2010) A fully-integrated 77-GHz FMCW RADAR transceiver in 65-nm CMOS technology. IEEE J Solid-State Circuits 45(12):2746–2756

    Article  ADS  Google Scholar 

  • Lee J-H, Lee JM, Hwang KC, Seo D-W, Shin D, Lee C (2020) Capacitively coupled microstrip comb-line array antennas for millimeter-wave applications. IEEE Antennas Wirel Propag Lett 19(8):1336–1339

    Article  ADS  Google Scholar 

  • Li J, Stoica P (2007) MIMO RADAR with colocated antennas. IEEE Signal Process Mag 24(5):106–114

    Article  ADS  Google Scholar 

  • Ma C, Yeo TS, Tan CS, Liu Z (2011) Three-dimensional imaging of targets using colocated MIMO radar. IEEE Trans Geosci Remote Sens 49(8):3009–3021

    Article  ADS  Google Scholar 

  • Marti E, de Miguel MA, Garcia F, Perez J (2019) A review of sensor technologies for perception in automated driving. IEEE Intell Transp Syst Mag 11(4):94–108

    Article  Google Scholar 

  • Menzel W, Moebius A (2012) Antenna concepts for millimeter-wave automotive RADAR sensors. Proc IEEE 100(7):2372–2379

    Article  Google Scholar 

  • Menzel W, Pilz D, Al-Tikriti M (2002) Millimeter-wave folded reflector antennas with high gain, low loss, and low profile. IEEE Antennas Propag Mag 44(3):24–29

    Article  ADS  Google Scholar 

  • Merlo JM, Nanzer JA (2022) A C-band fully polarimetric automotive synthetic aperture RADAR. IEEE Trans Veh Technol 71(3):2587–2600

    Article  Google Scholar 

  • Qu Y, Liao GS, Zhu SQ, Liu XY, Jiang H (2008) Performance analysis of beamforming for MIMO RADAR. Progr Electromagn Res 84:123–134

    Article  Google Scholar 

  • Ramasubramanian K, Ramaiah K, Aginskiy A (2017) Moving from legacy 24 GHz to state-of-the-art 77 GHz radar. Texax Instruments, Dallas

    Google Scholar 

  • Rao S, Texas instruments application report, SWRA554, May 2017

    Google Scholar 

  • Rasshofer RH (2007) Functional requirements of future automotive RADAR systems. In: 2007 European RADAR conference, pp 259–262

    Google Scholar 

  • Rim J-W, Koh I-S, Choi KS (2016) IPO analysis of performance of arbitrary shaped radome. In: European conference on antennas propagation (EuCAP-2016), Davos, pp 1–5

    Google Scholar 

  • RoCC press release (2009). http://www.eenova.de/news-presse/rocc/

  • Schuster T, Cassidian MS (2011) Reach/preach-a physical optics based tool for simulation of radome effects on antenna patterns. In: Proceedings of 6th European conference on antennas and propagation, pp 3225–3229

    Google Scholar 

  • Shin D, Kim K, Kim J, Park S (2014) Design of Null-Filling Antenna for automotive RADAR using the genetic algorithm. IEEE Antennas Wirel Propag Lett 13:738–741

    Article  ADS  Google Scholar 

  • Usugi T et al (2020) A 77 GHz 8RX3TX transceiver for 250 m long range automotive RADAR in 40 nm CMOS technology. In: 2020 IEEE Radio Frequency Integrated Circuits symposium (RFIC), pp 23–26

    Chapter  Google Scholar 

  • Vasanelli C, Batra R, Serio AD, Boegelsack F, Waldschmidt C (2017) Assessment of a millimeter-wave antenna system for MIMO RADAR applications. IEEE Antennas Wirel Propag Lett 16:1261–1264

    Article  ADS  Google Scholar 

  • Viikari VV, Varpula T, Kantanen M (2009) Road-condition recognition using 24-GHz automotive radar. IEEE Trans Intell Transp Syst 10(4):639–648

    Article  Google Scholar 

  • Waldschmidt C, Hasch J, Menzel W (2021) Automotive RADAR – from first efforts to future systems. IEEE J Microwaves 1(1):135–148

    Article  Google Scholar 

  • Wang X, Stelzer A (2013) A 79-GHz LTCC patch array antenna using a laminated waveguide-based vertical parallel feed. IEEE Antennas Wirel Propaga Lett 12:987–990

    Article  ADS  Google Scholar 

  • Yeap SB, Qing X, Chen ZN (2015) 77-GHz dual-layer transmit-array for automotive RADAR applications. IEEE Trans Antennas Propag 63(6):2833–2837

    Article  ADS  MATH  Google Scholar 

  • Yoo S, Milyakh Y, Kim H, Hong C, Choo H (2020) Patch array antenna using a dual coupled feeding structure for 79 GHz automotive RADAR applications. IEEE Antennas Wirel Propag Lett 19(4):676–679

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jogesh Chandra Dash .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dash, J.C., Sarkar, D. (2023). Antennas for mm-wave MIMO RADAR. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-1550-5_82-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1550-5_82-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1550-5

  • Online ISBN: 978-981-19-1550-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics