Skip to main content

Optical Dimensional Metrology

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Metrology and Applications

Abstract

Optical technologies continue to expand to ease engineering metrology and improve precision of measurements. Invariantly, the optical techniques are used for the continuous, high-speed inspections of items of all shapes, sizes, and materials in Industry 5.0. Combining optics with sensors and competitive digital procedure benefits the rapid, portable, and large measurement.

Though it is impossible to accommodate the vast knowledgebase of the optical metrology, an attempt is made to cover the glimpse of recent recommendations, well established, and accepted optical methods and dimensional metrology measurement that are covered in this chapter. The applications of different properties of light and their respect techniques are discussed. The implementation of optical concept for the dimensional metrology instrumentation is categorically described.

Finally, some of the new works and prospective research are given. Therefrom, new frontiers may be thought off.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abduljabbar S (2014) Linear error correction. Application Note, Mahr, Germany

    Google Scholar 

  • Alcock SG, Nistea I, Sawhney K (2016) Nano-metrology: the art of measuring X-ray mirrors with slope errors< 100 nrad. Rev Sci Instrum 87(5):051902

    Article  Google Scholar 

  • Ali SHR, Naeim IH (2014) Surface imperfection and wringing thickness in uncertainty estimation of end standards calibration. Opt Lasers Eng 60:25–31

    Article  Google Scholar 

  • Araujo-Hauck C, Pasquini L, Manescau A, Udem T, Hänsch TW, Holzwarth R, Sizmann A, Dekker H, D’Odorico S, Murphy MT (2007) Future wavelength calibration standards at ESO: the laser frequency comb. ESO Messenger 129:24–26

    ADS  Google Scholar 

  • Arif Sanjid M (2013) Improved direct comparison calibration of small angle blocks. Meas J Int Meas Confed 46(1):646–653. https://doi.org/10.1016/j.measurement.2012.08.024

    Article  Google Scholar 

  • ASME-Y 14.5 (2018) Dimensioning and tolerancing. In: Mastering solidworks, no. Y14, 5, vol 1982. Wiley, pp 787–808

    Google Scholar 

  • Aswal DK (2020) Quality infrastructure of India and its importance for inclusive national growth. Mapan J Metrol Soc India 35(2). https://doi.org/10.1007/s12647-020-00376-3

  • Badami VG, De Groot PJ, de Groot PJ (2016) Displacement measuring interferometry. In: Handbook of optical dimensional metrology. CRC Press, Boca Raton, pp 157–238. https://doi.org/10.1201/b13855-8

    Chapter  Google Scholar 

  • Badami VG, Abruña E, Huang L, Idir M (2019) In situ metrology for adaptive x-ray optics with an absolute distance measuring sensor array. Rev Sci Instrum 90(2):021703

    Article  ADS  Google Scholar 

  • Bhaduri B, Edwards C, Pham H, Zhou R, Nguyen TH, Goddard LL, Popescu G (2014) Diffraction phase microscopy: principles and applications in materials and life sciences. Adv Opt Photon 6(1):57–119

    Article  Google Scholar 

  • Castro HFF (2008) Uncertainty analysis of a laser calibration system for evaluating the positioning accuracy of a numerically controlled axis of coordinate measuring machines and machine tools. Precis Eng 32(2):106–113. https://doi.org/10.1016/j.precisioneng.2007.05.001

    Article  Google Scholar 

  • Chasles F, Dubertret B, Claude Boccara A (2007) Optimization and characterization of a structured illumination microscope. Opt Express 15(24):16130–16140

    Article  ADS  Google Scholar 

  • CIPM MRA-D-05 (2016) Measurement comparisons in the CIPM MRA, p 28

    Google Scholar 

  • Colonna De Lega X (1997) Processing of non-stationary interference patterns: adapted phase-shifting algorithms and wavelet analysis. Application to dynamic deformation measurements by holographic and speckle interferometry, EPFL thesis n° 1666, Lausanne

    Google Scholar 

  • Creath K (1988) Chapter 5: phase-measurement interferometry techniques. In: Progress in optics XXVI. Elsevier Science Publisher B.V, pp 349–393

    Chapter  Google Scholar 

  • Cui J, Li L, Tan J (2012) Opto-tactile probe based on spherical coupling for inner dimension measurement. Meas Sci Technol 23(8). https://doi.org/10.1088/0957-0233/23/8/085105

  • Darnedde H et al (1999) International comparisons of He-Ne lasers stabilized with 127I2 at λ≈633 nm (July 1993 to September 1995). Part IV: comparison of Western European lasers at λ≈633 nm. Metrologia 36(3):199–206. https://doi.org/10.1088/0026-1394/36/3/5

    Article  ADS  Google Scholar 

  • de Groot P (2015) Principles of interference microscopy for the measurement of surface topography. Adv Opt Photon 7(1):1–65

    Article  MathSciNet  Google Scholar 

  • de Groot P, de Lega XC, Su R, Coupland J, Leach R (2021) Modeling of coherence scanning interferometry using classical Fourier optics. Opt Eng 60(10):104106

    Article  ADS  Google Scholar 

  • Dewhurst RJ, Shan Q (1999) Optical remote measurement of ultrasound. Meas Sci Technol 10(11):R139

    Article  ADS  Google Scholar 

  • Doiron T (2008) Gauge blocks – a zombie technology. J Res Natl Inst Stand Technol 113(3):175–184. https://doi.org/10.6028/jres.113.013

    Article  Google Scholar 

  • Ehrlich CD, Rasberry SD (1997) Metrological timelines in traceability. Metrologia 34(6):503–514. https://doi.org/10.1088/0026-1394/34/6/6

    Article  ADS  Google Scholar 

  • Ehrlich C, Dybkaer R, Wöger W (2007) Evolution of philosophy and description of measurement (preliminary rationale for VIM3). Accred Qual Assur 12(3–4):201–218. https://doi.org/10.1007/s00769-007-0259-4

    Article  Google Scholar 

  • Eickhoff ML, Hall JL (1995) Optical frequency standard at 532 nm. IEEE Trans Instrum Meas 44(2):155–158

    Article  ADS  Google Scholar 

  • Fan KC, Cheng F, Wang HY, Ye JK (2012) The system and the mechatronics of a pagoda type micro-CMM. Int J Nanomanuf 8(1–2):67–86. https://doi.org/10.1504/IJNM.2012.044656

    Article  Google Scholar 

  • Feng Q, Zhang B, Kuang C (2004) A straightness measurement system using a single-mode fiber-coupled laser module. Opt Laser Technol 36(4):279–283

    Article  ADS  Google Scholar 

  • Flügge et al (2014) Improved measurement performance of the Physikalisch-Technische Bundesanstalt nanometer comparator by integration of a new Zerodur sample carriage. Opt Eng 53(12):122404. https://doi.org/10.1117/1.oe.53.12.122404

    Article  ADS  Google Scholar 

  • Fortier T, Baumann E (2019a) 20 years of developments in optical frequency comb technology and applications. Commun Phys 2:153. https://doi.org/10.1038/s42005-019-0249-y

    Article  Google Scholar 

  • Fortier T, Baumann E (2019b) 20 years of developments in optical frequency comb technology and applications. Commun Phys 2(1):1–16

    Article  Google Scholar 

  • Foster MP (2010) The next 50 years of the SI: a review of the opportunities for the e-Science age. Metrologia 47(6). https://doi.org/10.1088/0026-1394/47/6/R01

  • Francis D, Tatam RP, Groves RM (2010) Shearography technology and applications: a review. Meas Sci Technol 21(10):102001

    Article  ADS  Google Scholar 

  • Fuerst ME, Csencsics E, Haider C, Schitter G (2020) Confocal chromatic sensor with an actively tilted lens for 3D measurement. JOSA A 37(9):B46–B52

    Article  Google Scholar 

  • Gaigalas AK, Wang L, He H-J, DeRose P (2009) Procedures for wavelength calibration and spectral response correction of CCD array spectrometers. J Res Natl Inst Standards Technol 114(4):215

    Article  Google Scholar 

  • Gasvik KJ (2002) Optical metrology. Wiley. ISBN: 0-470-84300-4

    Book  Google Scholar 

  • Gonçalves J, Peuckert J (2011) Measuring the impacts of quality infrastructure. Impacts theory, empiric and study design, no. 7. Physikalisch-Technische Bundesanstalt, Braunschweig, p 43

    Google Scholar 

  • Haitjema H (2008) Achieving traceability and sub-nanometer uncertainty using interferometric techniques. Meas Sci Technol 19(8). https://doi.org/10.1088/0957-0233/19/8/084002

  • Haitjema (2019) Calibration of displacement laser interferometer Systems for Industrial Metrology. Sensors 19(19):4100. https://doi.org/10.3390/s19194100

    Article  ADS  Google Scholar 

  • Hall JL, Ye J (2003) Optical frequency standards and measurement. IEEE Trans Instrum Meas 52(2):227–231

    Article  ADS  Google Scholar 

  • Harding K (2008) Optical metrology overview. In: Harding K, Pike ER, Brown RGW (eds) Handbook of optical dimensional metrology. CRC Press, Boca Raton, pp 3–35

    Google Scholar 

  • https://www.bipm.org/en/publications/SI-brochure/ (2021)

  • Hu Q (2013) Phase-shifting systems and phase-shifting analysis. In: Handbook of optical dimensional metrology. CRC Press, Boca Raton

    Google Scholar 

  • Igor K, Li R, Zhou M, Duan DD, Mikhail N, Huang G, Yang J, Tan X (2021) A 2D quadrangular pyramid photoelectric autocollimator with extended angle measurement range. Optoelectron Lett 17(8):468–474

    Article  ADS  Google Scholar 

  • ILAC (2007) Guidelines for the determination of calibration intervals of measuring instruments. ILAC

    Google Scholar 

  • IS 8000 -1 (2005) Geometrical product specifications (GPS) – geometrical tolerancing – tolerances of form, orientation, location, and run-out. ISO

    Google Scholar 

  • ISO/IEC-17025 (2017) General requirements for the competence of testing and calibration laboratories. ISO

    Google Scholar 

  • ISO-14978 (2018) Geometrical product specifications (GPS) – general concepts and requirements for GPS measuring equipment. ISO

    Google Scholar 

  • ISO-17450 (2011) Geometrical product specifications (GPS) – general concepts. ISO

    Google Scholar 

  • JCGM-100 (2008) Evaluation of measurement data – guide to the expression of uncertainty in measurement. BIPM 50(September):134

    Google Scholar 

  • Jin J, Kim Y-J, Kim Y, Kim S-W, Kang C-S (2006) Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser. Opt Express 14(13):5968–5974

    Article  ADS  Google Scholar 

  • Kacker RN, Datla RU, Parr AC (2003) Statistical interpretation of key comparison reference value and degrees of equivalence. J Res Natl Inst Stand Technol 108(6):439–446. https://doi.org/10.6028/jres.108.038

    Article  Google Scholar 

  • Kim JA, Kim JW, Kang CS, Jin J, Eom TB (2011) An interferometric calibration system for various linear artefacts using active compensation of angular motion errors. Meas Sci Technol 22(7). https://doi.org/10.1088/0957-0233/22/7/075304

  • Köchert P, Flügge J, Weichert C, Köning R (2011) A fast phase meter for interferometric applications with an accuracy in the picometer regime, no. May 2014

    Google Scholar 

  • Lazar J, Hrabina J, Jedlička P, Číp O (2009) Absolute frequency shifts of iodine cells for laser stabilization. Metrologia 46(5):450–456. https://doi.org/10.1088/0026-1394/46/5/008

    Article  ADS  Google Scholar 

  • Lemaillet P, Cooksey CC, Levine ZH, Pintar AL, Hwang J, Allen DW (2016) National Institute of Standards and Technology measurement service of the optical properties of biomedical phantoms: current status. In: Proceedings of the SPIE 9700, design and quality for biomedical technologies IX, 970002. https://doi.org/10.1117/12.2214569

    Chapter  Google Scholar 

  • Li W, Wang H, Feng Z (2014) Ultrahigh-resolution and non-contact diameter measurement of metallic wire using eddy current sensor. Rev Sci Instrum 85(8):085001. https://doi.org/10.1063/1.4891699

    Article  ADS  Google Scholar 

  • Li X, Wang H, Ni K, Zhou Q, Mao X, Zeng L, Wang X, Xiao X (2016) Two-probe optical encoder for absolute positioning of precision stages by using an improved scale grating. Opt Express 24(19):21378–21391

    Article  ADS  Google Scholar 

  • Michelson AA (1893) Light-waves and their application to metrology. Nature 49(1255):56–60

    Article  ADS  MATH  Google Scholar 

  • Moore A, Hand D, Barton J, Jones J (1999) Transient deformation measurement with electronic speckle pattern interferometry and a high-speed camera. Appl Opt 38:1159–1162

    Article  ADS  Google Scholar 

  • NPL, UK (2005) Good practice in the design and interpretation of engineering drawings for measurement processes, no. 79. NPL

    Google Scholar 

  • Nyakang OE, Rurimo GK, Karimi PM (2013) Optical phase shift measurements in interferometry. Int J Optoelectron Eng 3(2):13–18

    Google Scholar 

  • OIML VIM (2000) International vocabulary of terms in legal metrology. OIML, pp 1–28

    Google Scholar 

  • Ortlepp I, Manske E, Zöllner J-P, Rangelow IW (2020) Phase-modulated standing wave interferometer. Multidisciplinary Digital Publ Inst Proc 56(1):12

    Google Scholar 

  • Pendrill LR (2014) Using measurement uncertainty in decision-making and conformity assessment. Metrologia 51(4). https://doi.org/10.1088/0026-1394/51/4/S206

  • Phillips SD, Estler WT, Doiron T, Eberhardt KR, Levenson MS (2001) A careful consideration of the calibration concept. J Res Natl Inst Stand Technol 106(2):371–379. https://doi.org/10.6028/jres.106.014

    Article  Google Scholar 

  • Picqué N, Hänsch TW (2019) Frequency comb spectroscopy. Nat Photon 13:146–157. https://doi.org/10.1038/s41566-018-0347-5

    Article  ADS  Google Scholar 

  • Pierre Fanton J (2019) A brief history of metrology:past, present, and future. IJMQE 10(5):108. https://doi.org/10.1080/14452294.2005.11649483

    Article  Google Scholar 

  • Quinn T, Kovalevsky J (2005) The development of modern metrology and its role today. Philos Trans R Soc A Math Phys Eng Sci 363(1834):2307–2327. https://doi.org/10.1098/rsta.2005.1642

    Article  ADS  Google Scholar 

  • Raghavendra NV, Krishnamurthy L (2013) Engineering metrology measurements, no. 2, vol 1. Oxford University Press, New Delhi

    Google Scholar 

  • Rehman S, Matsuda K, Yamauchi M, Muramatsu M, Barbastathis G, Sheppard C (2012) A simple Lensless digital holographic microscope. In: Digital holography and three-dimensional imaging. Optica Publishing Group, p DSu3C-3

    Google Scholar 

  • Richard Leach’s Web Portal (n.d.) https://orcid.org/0000-0001-5777-067X

  • Rubin T, Silander I, Johan Zakrisson M, Hao CF, Asbahr P, Bernien M et al (2022) Thermodynamic effects in a gas modulated Invar-based dual Fabry–Pérot cavity refractometer. Metrologia 59(3):035003

    Article  ADS  Google Scholar 

  • Rumble JR, Harris GL, Trahey NM (2001) NIST mechanisms for disseminating measurements. J Res Natl Bur Stand (USA) 106(1):315–340

    Google Scholar 

  • Saidane A (2000) Optical sensors and microsystems: new concepts, materials, technologies. In: Martellucci S, Chester AN, Migrani AG (eds) . Kluwer Academic/Plenum Press, New York, 315 pages. Hardbound, ISBN 0-306-46380-6. Microelectronics Journal 7, no. 32 (2001): 621–622

    Google Scholar 

  • Schneider B, Upmann I, Kirsten I, Bradl J, Hausmann M, Cremer C (1999) A dual-laser, spatially modulated illumination fluorescence microscope. Microsc Anal 57:5–8

    Google Scholar 

  • Schödel R (2015) Utilization of coincidence criteria in absolute length measurements by optical interferometry in vacuum and air. Meas Sci Technol 26(8):084007. https://doi.org/10.1088/0957-0233/26/8/084007

    Article  ADS  Google Scholar 

  • Shimizu Y, Matsukuma H, Gao W (2019) Optical sensors for multi-axis angle and displacement measurement using grating reflectors. Sensors (Switzerland) 19(23). https://doi.org/10.3390/s19235289

  • Smith GT, Smith GT (2002) Surface texture: two-dimensional. In: Industrial metrology. Springer, London, pp 1–67

    Chapter  Google Scholar 

  • Stone J, Muralikrishnan B, Sahay C (2011) Geometric effects when measuring small holes with micro contact probes. J Res Natl Inst Stand Technol 116(2):573–587. https://doi.org/10.6028/jres.116.006

    Article  Google Scholar 

  • Swyt DA (2001) Length and dimensional measurements at NIST. J Res Natl Inst Stand Technol 106(1):1–23. https://doi.org/10.6028/jres.106.002

    Article  Google Scholar 

  • Tendela LP, Galizzi GE, Federico A, Kaufmann GH (2015) Measurement of non-monotonous phase changes in temporal speckle pattern interferometry using a correlation method without a temporal carrier. Opt Lasers Eng 73:16–21

    Article  Google Scholar 

  • Vrbik J (2021) Understanding Lens Aberrations. Appl Math 12(7):521–534

    Article  Google Scholar 

  • Vrhovec M, Kovač I, Munih M (2007) Optical deflection measuring system. Precis Eng 31(3):188–195. https://doi.org/10.1016/j.precisioneng.2006.06.004

    Article  Google Scholar 

  • Weichert C et al (2009) A model based approach to reference-free straightness measurement at the nanometer comparator. Model Asp Opt Metrol II 7390(June):73900O. https://doi.org/10.1117/12.827681

    Article  Google Scholar 

  • White R (2011) The meaning of measurement in metrology. Accred Qual Assur 16(1):31–41. https://doi.org/10.1007/s00769-010-0698-1

    Article  Google Scholar 

  • Wimmer W (2017) Carl Zeiss, Ernst Abbe, and advances in the light microscope. Microscopy Today 25(4):50–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Sanjid Mahammad .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mahammad, A.S., Chaudhary, K.P. (2023). Optical Dimensional Metrology. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-1550-5_69-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1550-5_69-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1550-5

  • Online ISBN: 978-981-19-1550-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Optical Dimensional Metrology
    Published:
    18 April 2023

    DOI: https://doi.org/10.1007/978-981-19-1550-5_69-2

  2. Original

    Optical Dimensional Metrology
    Published:
    06 April 2023

    DOI: https://doi.org/10.1007/978-981-19-1550-5_69-1