Skip to main content

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 222))

Abstract

The emergence of COVID-19 has caused a disastrous scenario worldwide, becoming one of the most acute and deadly diseases in the last century wreaking havoc on the health and lives of countless people. The prevalence rate of COVID-19 is growing significantly every day across the world. One critical step in combating COVID-19 is the capacity to identify infected individuals and place them in special care as soon as possible. Detecting this condition via radiography and radiology images is one of the quickest ways to diagnose patients. Early study has found specific abnormalities in the chest radiographs of infected individuals with COVID-19. Inspired by prior research, we examine the application of transfer learning models to detect COVID-19 patients in X-rays. In this study, an X-ray image collection from patients with common bacterial pneumonia, viral pneumonia, proven COVİD-19 disease, and normal occurrences was used to diagnose coronavirus disease automatically. A dataset has been used in this experiment comprising 76 image samples showing verified COVID-19 illness, 2786 images showing bacterial pneumonia, 1504 images showing viral pneumonia, and 1583 images showing normal circumstances. The information was gathered from publicly accessible X-ray images. Data augmentation technique is applied to the trained image dataset. Two transfer learning models, namely, VGG 16 and Xception, have been modified in this paper after applying additional layers with the base model. Modified Xception model provides an overall accuracy of 84.82% for Adam optimizer and 78.40% for RMSprop optimizer. Modified VGG 16 model provides an overall accuracy of 84.98% for Adam optimizer and 83.88% for RMSprop optimizer. In addition to accuracy, we show each model’s receiver operating characteristic (ROC) curve, precision, recall, F1-score, and AUC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mondal, M.R.H., Bharati, S., Podder, P., Podder, P.: Data analytics for novel coronavirus disease. Inform. Med. Unlocked 20, 100374 (2020)

    Google Scholar 

  2. Podder, P., Khamparia, A., Mondal, M.R.H., Rahman, M.A., Bharati, S.: Forecasting the spread of COVID-19 and ICU requirements. Int. J. Online Biomed. Eng. (IJOE) 17(5), 81–99 (2021)

    Article  Google Scholar 

  3. Podder, P., Bharati, S., Mondal, M.R.H., Kose, U.: Application of machine learning for the diagnosis of COVID-19. In: Data Science for COVID-19, pp. 175–194. Academic Press (2021)

    Google Scholar 

  4. Radiology Assistant: X-ray chest images (2020). Retrieved 23 March 2020 from https://radiologyassistant.nl/chest/lk-jg-1

  5. Bharati, S., Podder, P., Mondal, M., Prasath, V.B.: CO-ResNet: optimized ResNet model for COVID-19 diagnosis from X-ray images. Int. J. Hybrid Intell. Syst. (Preprint), 1–15 (2021)

    Google Scholar 

  6. Bharati, S., Podder, P., Mondal, M.R.H.: Hybrid deep learning for detecting lung diseases from X-ray images. Inform. Med. Unlocked 20, 100391 (2020)

    Google Scholar 

  7. Bharati, S., Prajoy Podder, M., Mondal, R.H., Surya Prasath, V.B.: Medical imaging with deep learning for COVID-19 diagnosis: a comprehensive review. Int. J. Comput. Inform. Syst. Ind. Manag. Appl. 13, 91–112 (2021)

    Google Scholar 

  8. Mondal, M.R.H., Bharati, S., Podder, P.: Diagnosis of COVID-19 using machine learning and deep learning: a review. Curr. Med. Imaging (2021). https://doi.org/10.2174/1573405617666210713113439

    Article  Google Scholar 

  9. Bharati, S., Podder, P., Mondal, M.R.H., Gandhi, N.: Optimized NASNet for diagnosis of COVID-19 from lung CT Images. In: International Conference on Intelligent Systems Design and Applications, pp. 647–656. Springer, Cham (2020, December)

    Google Scholar 

  10. Bharati, S., Podder, P., Mondal, M. R. H., Podder, P., Kose, U.: A review on epidemiology, genomic characteristics, spread, and treatments of COVID-19. In Data Science for COVID-19, pp. 487-505. Academic Press (2022). https://doi.org/10.1016/B978-0-323-90769-9.00011-6

    Google Scholar 

  11. Yang, Y., Yang, M., Yuan, J., Wang, F., Wang, Z., Li, J., Liu, Y., et al.: Laboratory diagnosis and monitoring the viral shedding of SARS-CoV-2 infection. Innov. 1(3), 100061 (2020)

    Google Scholar 

  12. Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Xia, L.: Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 296(2), E32–E40 (2020)

    Google Scholar 

  13. Kanne, J.P., Little, B.P., Chung, J.H., Elicker, B.M., Ketai, L.H.: Essentials for radiologists on COVID-19: an update—radiology scientific expert panel. Radiology 296(2), E113–E114 (2020)

    Article  Google Scholar 

  14. Kong, W., Agarwal, P.P.: Chest imaging appearance of COVID-19 infection. Radiol. Cardiothorac. Imaging 2(1), e200028 (2020)

    Google Scholar 

  15. Hansell, D.M., Bankier, A.A., MacMahon, H., McLoud, T.C., Muller, N.L., Remy, J.: Fleischner society: glossary of terms for thoracic imaging. Radiology 246(3), 697–722 (2008)

    Article  Google Scholar 

  16. Bharati, S., Podder, P., Mondal, R., Mahmood, A., Raihan-Al-Masud, M.: Comparative performance analysis of different classification algorithm for the purpose of prediction of lung cancer. In: International Conference on Intelligent Systems Design and Applications, pp. 447–457. Springer, Cham (2018, December)

    Google Scholar 

  17. Bharati, S., Podder, P., Paul, P.K.: Lung cancer recognition and prediction according to random forest ensemble and RUSBoost algorithm using LIDC data. Int. J. Hybrid Intell. Syst. 15(2), 91–100 (2019)

    Google Scholar 

  18. Bharati, S., Podder, P.: 1 Performance of CNN for predicting cancerous lung nodules using LightGBM. In: Artificial Intelligence for Data-Driven Medical Diagnosis, pp. 1–18. De Gruyter (2021)

    Google Scholar 

  19. Rodrigues, J.C.L., Hare, S.S., Edey, A., Devaraj, A., Jacob, J., Johnstone, A., Robinson, G., et al.: An update on COVID-19 for the radiologist—a British society of Thoracic Imaging statement. Clin. Radiol. 75(5), 323 (2020)

    Google Scholar 

  20. Cohen, J.P., Morrison, P., Dao, L., Roth, K., Duong, T.Q., Ghassemi, M.: COVID-19 image data collection: prospective predictions are the future (2020). arXiv preprint arXiv:2006.11988

  21. Mondal, M.R.H., Bharati, S., Podder, P.: CO-IRv2: Optimized InceptionResNetV2 for COVID-19 detection from chest CT images. PLoS ONE 16(10): e0259179 (2021). https://doi.org/10.1371/journal.pone.0259179

  22. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  24. Bharati, S., Podder, P., Mondal, M.: Artificial neural network based breast cancer screening: a comprehensive review. Int. J. Comput. Inform. Syst. Ind. Manag. Appl. 12, 125–137 (2020)

    Google Scholar 

  25. Khamparia, A., Bharati, S., Podder, P., Gupta, D., Khanna, A., Phung, T.K., Thanh, D.N.: Diagnosis of breast cancer based on modern mammography using hybrid transfer learning. Multidimension. Syst. Signal Process. 32(2), 747–765 (2021)

    Article  Google Scholar 

  26. Rajpurkar, P., Irvin, J., Zhu, K., et al.: Chexnet: radiologist-level pneumonia detection on chest X-rays with deep learning (2017). arXiv preprint arXiv:1711.05225

  27. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  28. Cohen, J.P., Hashir, M., Brooks, R., Bertrand, H.: On the limits of cross-domain generalization in automated X-ray prediction. In: Medical Imaging with Deep Learning, pp. 136–155. PMLR (2020, September)

    Google Scholar 

  29. Yao, L., Prosky, J., Covington, B., Lyman, K.: A strong baseline for domain adaptation and generalization in medical imaging (2019). arXiv preprint arXiv:1904.01638

  30. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  31. Narin, A., Kaya, C., Pamuk, Z.: Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Anal. Appl. 1–14 (2021)

    Google Scholar 

  32. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  33. Apostolopoulos, I.D., Mpesiana, T.A.: COVID-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med. 43(2), 635–640 (2020)

    Article  Google Scholar 

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556

  35. Wang, L., Lin, Z.Q., Wong, A.: COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  36. Hemdan, E.E.D., Shouman, M.A., Karar, M.E.: COVIDX-Net: a framework of deep learning classifiers to diagnose COVİD-19 in X-ray images (2020). arXiv preprint arXiv:2003.11055

  37. Pereira, R.M., Bertolini, D., Teixeira, L.O., Silla Jr, C.N., Costa, Y.M.: COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Comput. Methods Prog. Biomed. 194, 105532 (2020)

    Google Scholar 

  38. Karim, M., Döhmen, T., Rebholz-Schuhmann, D., Decker, S., Cochez, M., Beyan, O.: Deepcovidexplainer: explainable COVİD-19 predictions based on chest X-ray images (2020). arXiv preprint arXiv:2004.04582

  39. Hall, L.O., Paul, R., Goldgof, D.B., Goldgof, G.M.: Finding COVİD-19 from chest X-rays using deep learning on a small dataset (2020). arXiv preprint arXiv:2004.02060

  40. Tabik, S., Gómez-Ríos, A., Martín-Rodríguez, J.L., et al.: COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on Chest X-ray images. IEEE J. Biomed. Health Inform. 24(12), 3595–3605 (2020)

    Article  Google Scholar 

  41. Cohen: Covid chest X-ray dataset (2020). https://github.com/ieee8023/covid-chestxray-dataset

  42. Mooney. Kaggle chest X-ray images (pneumonia) dataset. https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

  43. Silberman, N., Guadarrama, S.: TensorFlow-Slim image classification model library (2016). https://github.com/tensorflow/models/tree/master/research/slim

  44. Chollet, F.: Keras (2015). https://github.com/fchollet/keras

  45. Podder, P., Bharati, S.: data.zip. figshare (2021). Dataset. https://doi.org/10.6084/m9.figshare.15030936.v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrato Bharati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Podder, P., Bharati, S., Mondal, M.R.H., Khamparia, A. (2022). Rethinking the Transfer Learning Architecture for Respiratory Diseases and COVID-19 Diagnosis. In: Khamparia, A., Gupta, D., Khanna, A., Balas, V.E. (eds) Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligence (RAI). Intelligent Systems Reference Library, vol 222. Springer, Singapore. https://doi.org/10.1007/978-981-19-1476-8_8

Download citation

Publish with us

Policies and ethics