Skip to main content

Computational Modeling of Aerosol Transmission of COVID-19

  • Chapter
  • First Online:
Studies to Combat COVID-19 using Science and Engineering
  • 187 Accesses

Abstract

In this chapter, recent advances in computational modeling of respiratory droplets in indoor environments in connection with the aerosol transmission of COVID-19 are presented. In addition, the available literature on respiratory droplet emission by speaking, coughing, and sneezing are reviewed. The computational modeling approach for simulation of airflows and droplet and particle motions in a ventilated environment is described in layman’s terms. Examples of dispersion and transport of respiratory droplets emitted due to coughing and speaking in a classroom, in a subway train compartment, and in small and large ventilated office spaces are presented. Finally, the filtration effects of wearing masks and their influence on reducing our chances of exposure are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO. (2021). Retrieved from https://www.who.int/

  2. CDC. (2021). Retrieved from https://www.cdc.gov/

  3. Bourouiba, L., Dehandschoewercker, E., & Bush, J. W. M. (2014). Violent expiratory events: On coughing and sneezing. Journal of Fluid Mechanics, 745, 537–563.

    Article  Google Scholar 

  4. Nicas, M., Nazaroff, W. W., & Hubbard, A. (2005). Toward understanding the risk of secondary airborne infection: Emission of respirable pathogens. Journal of Occupational and Environmental Hygiene, 2, 143–154.

    Article  PubMed  Google Scholar 

  5. Noakes, C. J., Beggs, C. B., Sleigh, P. A., & Kerr, K. G. (2006). Modelling the transmission of airborne infections in enclosed spaces. Epidemiology and Infection, 134, 1082–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stilianakis, N. I., & Drossinos, Y. (2010). Dynamics of infectious disease transmission by inhalable respiratory droplets. Journal of the Royal Society Interface, 7, 1355–1366.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Buonanno, G., Stabile, L., & Morawska, L. (2020a). Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environment International, 141, 105794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buonanno, G., Morawska, L., & Stabile, L. (2020b). Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection. Environment International, 145, 106112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Asadi, S., Bouvier, N., Wexler, A. S., & Ristenpart, W. D. (2020). The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Science and Technology, 54, 635–638.

    Article  CAS  Google Scholar 

  10. Morawska, L., & Cao, J. (2020). Airborne transmission of SARS-CoV-2: The world should face the reality. Environment International, 139, 105730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Allen, J. G., & Marr, L. C. (2020). Recognizing and controlling airborne transmission of SARS-CoV-2 in indoor environments. Indoor Air, 30(4), 557.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, R., Li, Y., Zhang, A. L., Wang, Y., & Molina, M. J. (2020). Identifying airborne transmission as the dominant route for the spread of COVID-19. Proceedings. National Academy of Sciences. United States of America, 117, 14857–14863.

    Article  CAS  Google Scholar 

  13. Ahmed, T., Wendling, H. E., Mofakham, A. A., Ahmadi, G., Helenbrook, B. T., Ferro, A. R., Brown, D. M., & Erath, B. D. (2021). Variability in expiratory trajectory angles during consonant production by one human subject and from a physical mouth model: application to respiratory droplet emission. Indoor Air, 31, 1896–1912. Retrieved from https://onlinelibrary.wiley.com/doi/epdf/10.1111/ina.12908

    Article  PubMed  Google Scholar 

  14. Bazant, M. Z., & Bush, J. W. M. (2021). A guideline to limit indoor airborne transmission of COVID-19. PNAS, 118(17), 1–12.

    Article  Google Scholar 

  15. Asadi, S., Wexler, A. S., Cappa, C. D., Barreda, S., Bouvier, N. M., & Ristenpart, W. D. (2019). Aerosol emission and superemission during human speech increase with voice loudness. Scientific Reports, 9(1), 1–10.

    Article  Google Scholar 

  16. Chong, K. L., Ng, C. S., Hori, N., Yang, R., Verzicco, R., & Lohse, D. (2021). Extended lifetime of respiratory droplets in a turbulent vapour puff and its implications on airborne disease transmission. Physical Review Letters, 126, 034502.

    Article  CAS  PubMed  Google Scholar 

  17. Duguid, J. P. (1946). The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. Epidemiology and Infection, 44(6), 471–479.

    Article  CAS  Google Scholar 

  18. Han, Z. Y., Weng, W. G., & Huang, Q. Y. (2013). Characterizations of particle size distribution of the droplets exhaled by sneeze. Journal of the Royal Society Interface, 10, 20130560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Memarzadeh, F. (2011). Improved strategy to control aerosol-transmitted infections in a hospital suite. In Proceedings of IAQ Conference 2012, Freiburg, Germany, February 2011.

    Google Scholar 

  20. Morawska, L., & Milton, D. K. (2020). It is time to address airborne transmission of COVID-19. Clinical Infectious Diseases, 6, ciaa939.

    Article  Google Scholar 

  21. Papineni, R. S., & Rosenthal, F. S. (1997). The size distribution of droplets in the exhaled breath of healthy human subjects. Journal of Aerosol Medicine, 10, 105–116.

    Article  CAS  PubMed  Google Scholar 

  22. Scheuch, G. (2020). Breathing is enough: For the spread of influenza virus and SARS–CoV-2 by breathing only. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 33(4), 230–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xie, X., Li, Y., Chwang, A. T., Ho, P., & Seto, W. (2007). How far droplets can move in indoor environments–revisiting the Wells evaporation-falling curve. Indoor Air, 17(3), 211–225. https://doi.org/10.1111/j.1600-0668.2007.00469.x

    Article  CAS  PubMed  Google Scholar 

  24. Bradley, R. S., Evans, M. G., & Whytlaw-Gray, R. W. (1946). The rate of evaporation of droplets. Evaporation and diffusion coefficients, and vapour pressures of dibutyl phthalate and butyl stearate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 186, 368–390. https://doi.org/10.1098/rspa.1946.0050

    Article  CAS  Google Scholar 

  25. Langmuir, I. (1918). The evaporation of small spheres. Physics Review, 12, 368–370.

    Article  CAS  Google Scholar 

  26. Pirhadi, M., Sajadi, B., Ahmadi, G., & Malekian, D. (2018). Phase change and deposition of inhaled droplets in the human nasal cavity under cyclic inspiratory airflow. Journal of Aerosol Science, 118, 64–81.

    Article  CAS  Google Scholar 

  27. Sazhin, S. S. (2006). Advanced models of fuel droplet heating and evaporation. Progress in Energy and Combustion Science, 32(2), 162–214.

    Article  CAS  Google Scholar 

  28. Wells, W. F. (1934). On air-borne infection: Study II. Droplets and droplet nuclei. American Journal of Epidemiology, 20(3), 611–618.

    Article  Google Scholar 

  29. Wells, W. F. (1955). Airborne contagion and air hygiene. an ecological study of droplet infections. In Airborne contagion and air hygiene. An ecological study of droplet infections. Harvard University Press.

    Google Scholar 

  30. Levich, V. (1962). Physicochemical hydrodynamics. Prentice-Hall.

    Google Scholar 

  31. Fuchs, N. A. (1964). The mechanics of aerosols. Pergamon Press.

    Google Scholar 

  32. Mercer, T. T. (1973). Aerosol technology in hazard evaluation of airborne particles. Academic Press.

    Google Scholar 

  33. Twomey, S. (1976). Atmospheric aerosols. Elsevier.

    Google Scholar 

  34. Hinds, W. C. (1982). Aerosol technology, properties, behavior, and measurement of airborne particles. John Wiley and Sons.

    Google Scholar 

  35. Spurny, K. R. (1986). Physical and chemical characterization of individual airborne particles. John Wiley and Sons.

    Google Scholar 

  36. Seinfeld, J. H. (1986). Atmospheric chemistry and physics of air pollution. John Wiley and Sons.

    Google Scholar 

  37. Vincent, J. H. (1995). Aerosol science for industrial hygienists. Pergamon Press.

    Google Scholar 

  38. Tu, J., Inthavong, K., & Ahmadi, G. (2013). Computational fluid and particle dynamics in the human respiratory system. Springer. https://doi.org/10.1007/978-94-007-4488-2

    Book  Google Scholar 

  39. Ahmadi, G., & Goldschmidt, V. W. (1971). Motion of particle in a turbulent fluid-the basset history term. Journal of Applied Mechanics, Transactions ASME, 38, 561–563.

    Article  Google Scholar 

  40. Riley, J. J., & Patterson, G. S., Jr. (1974). Diffusion experiments with numerically integrated isotropic turbulence. Physics of Fluids, 17, 292–297.

    Article  Google Scholar 

  41. Reeks, M. W. (1977). On the dispersion of small particles suspended in an isotropic turbulent flow. Journal of Fluid Mechanics, 83, 529–546.

    Article  Google Scholar 

  42. Reeks, M. W., & Mckee, S. (1984). The dispersive effect of basset history forces on particle motion in a turbulent flow. Physics of Fluids, 27, 1573–1582.

    Article  CAS  Google Scholar 

  43. Rizk, M. A., & Elghobashi, S. E. (1985). The motion of a spherical particle suspended in a turbulent flow near a plane wall. Physics of Fluids, 20, 806–817.

    Article  Google Scholar 

  44. Maxey, M. R. (1987). The Gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. Journal of Fluid Mechanics, 174, 441–445.

    Article  Google Scholar 

  45. Wang, L.-P., & Stock, D. E. (1992). Stochastic trajectory models for turbulent diffusion: Monte-Carlo process versus Markov chains. Atmospheric Environment, 26, 1599–1607.

    Article  Google Scholar 

  46. Wang, L.-P., & Stock, D. E. (1993). Dispersion of heavy particles by turbulent motion. Journal of the Atmospheric Sciences, 50, 1897–1913.

    Article  Google Scholar 

  47. Crowe, C. T. (1982). Review - Numerical models for dilute gas-particle flows. Journal of Fluids Engineering, Transactions of the ASME, 104, 297–303.

    Article  Google Scholar 

  48. Li, A., & Ahmadi, G. (1992). Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Science and Technology, 16(4), 209–226.

    Article  CAS  Google Scholar 

  49. Li, A., & Ahmadi, G. (1993a). Deposition of aerosols on surfaces in a turbulent channel flow. International Journal of Engineering Science, 31(3), 435–451.

    Article  CAS  Google Scholar 

  50. Li, A., & Ahmadi, G. (1993b). Computer simulation of deposition of aerosols in a turbulent channel flow with rough wall. Aerosol Science and Technology, 18, 11–24.

    Article  CAS  Google Scholar 

  51. He, C., & Ahmadi, G. (1999). Particle deposition in a nearly developed turbulent duct flow with electrophoresis. Journal of Aerosol Science, 30, 739–758.

    Article  CAS  Google Scholar 

  52. Friedlander, S. K., & Johnstone, H. F. (1957). Deposition of suspended particles from turbulent gas streams. Industrial and Engineering Chemistry, 49, 1151.

    Article  CAS  Google Scholar 

  53. Davies, C. N. (1966). Aerosol science. Academic Press.

    Google Scholar 

  54. Sehmel, G. A. (1973). Particle eddy diffusities and deposition velocities for isothermal flow and smooth surfaces. Journal of Aerosol Science, 4, 125–138.

    Article  Google Scholar 

  55. Wood, N. B. (1981). A simple method for calculation of turbulent deposition to smooth and rough surfaces. Journal of Aerosol Science, 12, 275–290.

    Article  CAS  Google Scholar 

  56. Fernandez de la Mora, J., & Friedlander, S. K. (1982). Aerosol and gas deposition to fully rough surfaces: Filtration model for blade-shaped elements. International Journal of Heat and Mass Transfer, 25, 1725–1735.

    Article  Google Scholar 

  57. Cleaver, J. W., & Yates, B. (1975). A sub layer model for the deposition of particles from a turbulent flow. Chemical Engineering Science, 30, 983–992.

    Article  CAS  Google Scholar 

  58. Fichman, M., Gutfinger, C., & Pnueli, D. (1988). A model for turbulent deposition of aerosols. Journal of Aerosol Science, 19, 123–136.

    Article  CAS  Google Scholar 

  59. Fan, F. G., & Ahmadi, G. (1993). A sublayer model for turbulent deposition of particles in vertical ducts with smooth and rough surfaces. Journal of Aerosol Science, 24, 45–64.

    Article  CAS  Google Scholar 

  60. Fan, F. G., & Ahmadi, G. (1994). On the sublayer model for turbulent deposition of aerosol particles in the presence of gravity and electric fields. Aerosol Science and Technology, 21, 49–71.

    Article  CAS  Google Scholar 

  61. Fan, F., & Ahmadi, G. (1995). A sublayer model for wall deposition of ellipsoidal particles in turbulent stream. Journal of Aerosol Science, 25, 813–840.

    Article  Google Scholar 

  62. Papavergos, P. G., & Hedley, A. B. (1984). Particle deposition behavior from turbulent flow. Chemical Engineering Research and Design, 62, 275–295.

    CAS  Google Scholar 

  63. Kvasnak, W., & Ahmadi, G. (1996). Deposition of ellipsoidal particles in turbulent duct flows. Chemical Engineering Science, 51, 5137–5148.

    Article  CAS  Google Scholar 

  64. Kvasnak, W., Ahmadi, G., Bayer, R., & Gaynes, M. A. (1993). Experimental investigation of dust particle deposition in a turbulent channel flow. Journal of Aerosol Science, 24, 795–815.

    Article  CAS  Google Scholar 

  65. Inthavong, K., Ge, Q. J., Li, X. D., & Tu, J. Y. (2012). Detailed predictions of particle aspiration affected by respiratory inhalation and airflow. Atmospheric Environment, 62, 107–117. https://doi.org/10.1016/j.atmosenv.2012.07.071

    Article  CAS  Google Scholar 

  66. Li, X. D., Inthavong, K., Ge, Q. J., & Tu, J. Y. (2013). Numerical investigation of particle transport and inhalation using standing thermal manikins. Building and Environment, 60(2013), 116–125. https://doi.org/10.1016/j.buildenv.2012.11.014

    Article  Google Scholar 

  67. Naseri, A., Abouali, O., & Ahmadi, G. (2017). Effect of turbulent thermal plume on aspiration efficiency of microparticles. Building and Environment, 118, 159–172.

    Article  Google Scholar 

  68. Azhdari, M., Tavakol, M. M., & Ahmadi, G. (2021). Particle inhalability of a standing mannequin with large airways in a ventilated room. Computers in Biology and Medicine, 138(104858), 1–25. https://doi.org/10.1016/j.compbiomed.2021.104858

    Article  CAS  Google Scholar 

  69. Bahmanzadeh, H., Abouali, O., & Ahmadi, G. (2016). Unsteady particle tracking of micro-particle deposition in the human nasal cavity under cyclic inspiratory flow. Journal of Aerosol Science, 101, 86–103.

    Article  CAS  Google Scholar 

  70. Ghahramani, E., Abouali, O., Emdad, H., & Ahmadi, G. (2017). Numerical investigation of turbulent airflow and microparticle deposition in a realistic model of human upper airway using LES. Computers and Fluids, 157, 43–54.

    Article  Google Scholar 

  71. Tavakol, M. M., Ghahramani, E., Abouali, O., Yaghoubi, M., & Ahmadi, G. (2017). Deposition fraction of ellipsoidal fibers in a model of human nasal cavity for laminar and turbulent flows. Journal of Aerosol Science, 113, 52–70.

    Article  CAS  Google Scholar 

  72. ANSYS. (2017). ANSYS-fluent theory guide 18.0. Ansys Inc.

    Google Scholar 

  73. Durbin, P. (1993). A Reynolds stress model for near-wall turbulence. Journal of Fluid Mechanics, 249, 465–498.

    Article  CAS  Google Scholar 

  74. Hanjalić, K., & Launder, B. (1972). A Reynolds stress model of turbulence and its application to thin shear flows. Journal of Fluid Mechanics, 52(4), 609–638.

    Article  Google Scholar 

  75. Pope, S. B. (2000). Turbulent flows. Cambridge University Press.

    Book  Google Scholar 

  76. Tian, L., & Ahmadi, G. (2007). Particle deposition in turbulent duct flows - Comparisons of different model predictions. Journal of Aerosol Science, 38, 377–397.

    Article  CAS  Google Scholar 

  77. Lesieur, M., MĂ©tais, O., & Comte, P. (2005). Large-eddy simulations of turbulence. Cambridge University Press.

    Book  Google Scholar 

  78. Rogallo, R. S., & Moin, P. (1984). Numerical simulation of turbulent flows. Annual Review of Fluid Mechanics, 16(1), 99–137.

    Article  Google Scholar 

  79. Sagaut, P. (2006). Large eddy simulation for incompressible flows: An introduction. Springer Science & Business Media.

    Google Scholar 

  80. Salmanzadeh, M., Rahnama, M., & Ahmadi, G. (2010). Effect of sub-grid scales on large eddy simulation of particle deposition in a turbulent channel flow. Aerosol Science and Technology, 44, 796–806.

    Article  CAS  Google Scholar 

  81. Kim, J., Moin, P., & Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133–166.

    Article  CAS  Google Scholar 

  82. McLaughlin, J. B. (1989). Aerosol particle deposition in numerically simulated channel flow. Physics of Fluids A: Fluid Dynamics (1989–1993), 1(7), 1211–1224.

    Article  CAS  Google Scholar 

  83. Moser, R. D., Kim, J., & Mansour, N. N. (1999). Direct numerical simulation of turbulent channel flow up to Re τ= 590. Physics of Fluids, 11(4), 943–945.

    Article  CAS  Google Scholar 

  84. Nasr, H., Ahmadi, G., & McLaughlin, J. B. (2009). A DNS study of effects of particle–particle collisions and two-way coupling on particle deposition and phasic fluctuations. Journal of Fluid Mechanics, 640, 507–536.

    Article  Google Scholar 

  85. Ounis, H., Ahmadi, G., & McLaughlin, J. B. (1993). Brownian particle deposition in a directly simulated turbulent channel flow. Physics of Fluids A: Fluid Dynamics, 5(6), 1427–1432.

    Article  CAS  Google Scholar 

  86. Thatcher, T. L., Lai, A. C., Moreno-Jackson, R., Sextro, R. G., & Nazaroff, W. W. (2002). Effects of room furnishings and air speed on particle deposition rates indoors. Atmospheric Environment, 36(11), 1811–1819. https://doi.org/10.1016/S1352-2310(02)00157-7

    Article  CAS  Google Scholar 

  87. Chen, F., Simon, C. M., & Lai, A. C. (2006). Modeling particle distribution and deposition in indoor environments with a new drift–flux model. Atmospheric Environment, 40(2), 357–367. https://doi.org/10.1016/j.atmosenv.2005.09.044

    Article  CAS  Google Scholar 

  88. Inthavong, K., Tian, Z. F., & Tu, J. Y. (2009). Effect of ventilation design on removal of particles in woodturning workstations. Building and Environment, 44(1), 125–136. https://doi.org/10.1016/j.buildenv.2008.02.002

    Article  Google Scholar 

  89. Zhao, B., & Guan, P. (2007). Modeling particle dispersion in personalized ventilated room. Building and Environment, 42(3), 1099–1109. https://doi.org/10.1016/j.buildenv.2005.11.009

    Article  Google Scholar 

  90. Gao, N. P., & Niu, J. L. (2007). Modeling particle dispersion and deposition in indoor environments. Atmospheric Environment, 41(18), 3862–3876. https://doi.org/10.1016/j.atmosenv.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  91. Ahmadzadeh, M., Farokhi, E., & Shams, M. (2021). Investigating the effect of air conditioning on the distribution and transmission of COVID-19 virus particles. Journal of Cleaner Production, 316(128147), 1–23.

    Google Scholar 

  92. Liu, H., He, S., Shen, L., & Hong, J. (2021). Simulation-based study of COVID-19 outbreak associated with air-conditioning in a restaurant. Physics of Fluids, 33(2), 023301. https://doi.org/10.1063/5.0040188

    Article  CAS  PubMed  Google Scholar 

  93. Abuhegazy, M., Talaat, K., Anderoglu, O., & Poroseva, S. V. (2020). Numerical investigation of aerosol transport in a classroom with relevance to COVID-19. Physics of Fluids, 32(10), 103311. https://doi.org/10.1063/5.0029118

    Article  CAS  PubMed  Google Scholar 

  94. Mirzaie, M., Lakzian, S., Khan, A., Ebrahimi Warkiani, M., Mahian, O., & Ahmadi, G. (2021). COVID-19 spread in a classroom equipped with partition – A CFD approach. Journal of Hazardous Materials, 420(126587), 1–18. https://doi.org/10.1016/j.jhazmat.2021.126587

    Article  CAS  Google Scholar 

  95. Satheesan, M. K., Mui, K. W., & Wong, L. T. (2020). A numerical study of ventilation strategies for infection risk mitigation in general inpatient wards. In Building simulation (pp. 1–10). Tsinghua University Press. https://doi.org/10.1007/s12273-020-0623-4

    Chapter  Google Scholar 

  96. Borro, L., Mazzei, L., Raponi, M., Piscitelli, P., Miani, A., & Secinaro, A. (2021). The role of air conditioning in the diffusion of Sars-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the Vatican State Children’s hospital. Environmental Research, 193, 110343. https://doi.org/10.1016/j.envres.2020.110343

    Article  CAS  PubMed  Google Scholar 

  97. Cui, F., Geng, X., Zervaki, O., Dionysiou, D. D., Katz, J., Haig, S. J., & Boufadel, M. (2021). Transport and fate of virus-laden particles in a supermarket: recommendations for risk reduction of COVID-19 spreading. Journal of Environmental Engineering, 147(4), 04021007. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001870

    Article  CAS  Google Scholar 

  98. Balachandar, S., Zaleski, S., Soldati, A., Ahmadi, G., & Bourouiba, L. (2020). Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines. International Journal of Multiphase Flow, 132(103439), 1–20. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103439

    Article  CAS  Google Scholar 

  99. Obeid, O., Rawat, M. S., White, P., Rosati Rowe, J., Ferro, A., & Ahmadi, G. (2021). Respiratory droplet emissions and transport estimates using CFD for a nine-person, cubicle-style office. In American Association for Aerosol Research, AAAR 39th Annual Conference, Virtual Conference, October 18–22. Retrieved from https://www.aaar.org/2021/program/

    Google Scholar 

  100. Fabian, P., McDevitt, J. J., DeHaan, W. H., Fung, R. O. P., Cowling, B. J., Chan, K. H., Leung, G. M., & Milton, D. K. (2008). Influenza virus in human exhaled breath: an observational study. PLoS One, 3, 1–6. https://doi.org/10.1371/journal.pone.0002691

    Article  CAS  Google Scholar 

  101. Marchioli, C., & Soldati, A. (2002). Mechanisms for particle transfer and segregation in a turbulent boundary layer. Journal of Fluid Mechanics, 468, 283–315.

    Article  Google Scholar 

  102. Marchioli, C., Picciotto, M., & Soldati, A. (2007). Influence of gravity and lift on particle velocity statistics and transfer rates in turbulent vertical channel flow. International Journal of Multiphase Flow, 33(3), 227–251.

    Article  CAS  Google Scholar 

  103. Zhang, H., & Ahmadi, G. (2000). Aerosol particle transport and deposition in vertical and horizontal turbulent duct flows. Journal of Fluid Mechanics, 406, 55–80.

    Article  CAS  Google Scholar 

  104. Chen, M., & McLaughlin, J. B. (1995). A new correlation for the aerosol deposition rate in vertical ducts. Journal of Colloid and Interface Science, 169(2), 437–455.

    Article  CAS  Google Scholar 

  105. Mofakham, A. A., & Ahmadi, G. (2019). Particles dispersion and deposition in inhomogeneous turbulent flows using continuous random walk models. Physics of Fluids, 31(8), 083301. 1–13.

    Article  Google Scholar 

  106. Mofakham, A. A., & Ahmadi, G. (2020a). On random walk models for simulation of particle-laden turbulent flows. International Journal of Multiphase Flow, 122(103157), 1–21. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103157

    Article  CAS  Google Scholar 

  107. Mofakham, A. A., & Ahmadi, G. (2020b). Improved discrete random walk stochastic model for simulating particle dispersion and deposition in inhomogeneous turbulent flows. Journal of Fluids Engineering, 142, 101401-1–101401-14. https://doi.org/10.1115/1.4047538

    Article  CAS  Google Scholar 

  108. Morawska, L. (2006). Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air, 16, 335–347.

    Article  CAS  PubMed  Google Scholar 

  109. Yang, L., Li, X., Yan, Y., & Tu, J. (2018). Effects of cough-jet on airflow and contaminant transport in an airliner cabin section. The Journal of Computational Multiphase Flows, 10(2), 72–82. https://doi.org/10.1177/1757482X17746920

    Article  Google Scholar 

  110. Feng, Y., Marchal, T., Sperry, T., & Yi, H. (2020). Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study. Journal of Aerosol Science, 147(105585), 1–19.

    Google Scholar 

  111. Tu, J., Inthavong, K., & Wong, K. K. L. (2015). Geometric model reconstruction. In Computational hemodynamics—Theory, modelling and applications. Springer.

    Chapter  Google Scholar 

  112. Dong, J., Inthavong, K., & Tu, J. (2017). Multiphase flows in biomedical applications. In G. H. Yeoh (Ed.), Handbook of multiphase flow science and technology. Springer.

    Google Scholar 

  113. Dong, J., Tian, L., & Ahmadi, G. (2019). Numerical assessment of respiratory airway exposure risks to diesel exhaust particles. Experimental and Computational Multiphase Flow, 1, 51–59. Retrieved from https://link.springer.com/article/10.1007/s42757-019-0005-2

    Article  Google Scholar 

  114. Masoomi, M. A., Salmanzadeh, M., & Ahmadi, G. (2021). Dispersion of droplets emitted during speaking in a ventilated indoor environment. In FEDSM2021-65837, V003T08A017, Proceedings of the ASME 2021 Fluids Engineering Division Summer Meeting, FEDSM2021 Virtual Conference, Online, August 10–12, 2021. https://doi.org/10.1115/FEDSM2021-65837. Retrieved from https://event.asme.org/FEDSM-2021

  115. Ahmadzadeh, M., & Shams, M. (2021). Passenger exposure to respiratory aerosols in a train cabin: Effects of window, injection source, output flow location. Sustainable Cities and Society, 75(103280), 1–16.

    Google Scholar 

  116. Hejazi, M., Sadrizadeh, S., Ahmadi, G., & Abouali, O. (2021). Numerical simulation of the COVID-19 airborne transmission in trains. In Proceedings of the ASME 2021 Fluids Engineering Division Summer Meeting, FEDSM2021 Virtual Conference, Online, August 10–12, 2021.

    Google Scholar 

  117. Rawat, M. S., Obeid, O., White, P., Rosati Rowe, J., Ahmadi, G., & Ferro, A. (2021). Comparison of CFD model and one-compartment materials balance model for predicting 8-Hr exposure to pathogen-laden expiratory droplets in a two-person office. In American Association for Aerosol Research, AAAR 39th Annual Conference, Virtual Conference. October 18–22. Retrieved from https://www.aaar.org/2021/program/

    Google Scholar 

  118. Grinshpun, S. A., Haruta, H., Eninger, R. M., Reponen, T., McKay, R. T., & Lee, S. A. (2009). Performance of an N95 filtering facepiece particulate respirator and a surgical mask during human breathing: Two pathways for particle penetration. Journal of Occupational and Environmental Hygiene, 6(10), 593–603.

    Article  PubMed  Google Scholar 

  119. Loeb, M., Dafoe, N., Mahony, J., John, M., Sarabia, A., Glavin, V., Webby, R., Smieja, M., Earn, D. J., Chong, S., Webb, A., & Walter, S. D. (2009). Surgical mask vs. N95 respirator for preventing influenza among health care workers: A randomized trial. Journal of the American Medical Association, 302(17), 1865–1871.

    Article  CAS  PubMed  Google Scholar 

  120. National Institute for Occupational Safety and Health (NIOSH). (1997). 42 CFR 84 Respiratory Protective Devices: Final Rules and Notice. 60. Federal Register: 110.

    Google Scholar 

  121. Qian, Y., Willeke, K., Grinshpun, S. A., Donnelly, J., & Coffey, C. C. (1998). Performance of N95 respirators: Filtration efficiency for airborne microbial and inert particles. American Industrial Hygiene Association, 59(2), 128–132.

    Article  CAS  Google Scholar 

  122. Lipp, A., & Edwards, P. (2012). Disposable surgical face masks for preventing surgical wound infection in clean surgery. Sao Paulo Medical Journal, 130(4), 269. https://doi.org/10.1002/14651858.CD002929

    Article  Google Scholar 

  123. Zhang, X., Li, H., Shen, S., & Cai, M. (2016). Investigation of the flow-field in the upper respiratory system when wearing n95 filtering facepiece respirator. Journal of Occupational and Environmental Hygiene, 13(5), 372–382.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goodarz Ahmadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmadi, G. (2022). Computational Modeling of Aerosol Transmission of COVID-19. In: Barry, D., Kanematsu, H. (eds) Studies to Combat COVID-19 using Science and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-1356-3_6

Download citation

Publish with us

Policies and ethics