Skip to main content

Myelin Imaging

  • Chapter
  • First Online:
Advances in Brain Imaging Techniques

Abstract

Central myelin is an envelope composed of dozens of superimposed layers of the plasma membrane of oligodendrocytes around the neural axons. This sheath functions as an insulator that increases the efficiency and speed of the electrical impulse. Several traditional staining methods have been available to observe myelin in tissue sections for many years. However, most of what we know about the structure and organization of myelin comes from transmission electron microscopy images. Nowadays, specific molecular components of myelin can be identified and visualized by fluorescence microscopy. Even though, their lipidic nature is much more difficult to observe by this kind of microscopy technique. In the last years, superresolution and other imaging techniques were developed and applied to the study of myelin. Thanks to these and other advances in imaging that are described in this chapter, new structural details as well as many of the fine steps involved in myelination are now visually accessible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boullerne AI (2016) The history of myelin. Exp Neurol 283:431–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Poitelon Y, Kopec AM, Belin S (2020) Myelin fat facts: an overview of lipids and fatty acid metabolism. Cell 9:812

    Article  CAS  Google Scholar 

  3. Delgado AC et al (2021) Release of stem cells from quiescence reveals gliogenic domains in the adult mouse brain. Science 372:1205–1209

    Article  CAS  PubMed  Google Scholar 

  4. Mizrak D et al (2019) Single-cell analysis of regional differences in adult V-SVZ neural stem cell lineages. Cell Rep 26:394–406.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bergles DE, Richardson WD (2016) Oligodendrocyte development and plasticity. Cold Spring Harb Perspect Biol 8:a020453

    Article  PubMed Central  Google Scholar 

  6. Nishiyama A, Shimizu T, Sherafat A, Richardson WD (2021) Life-long oligodendrocyte development and plasticity. Semin Cell Dev Biol 116:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hildebrand C, Remahl S, Persson H, Bjartmar C (1993) Myelinated nerve fibres in the CNS. Prog Neurobiol 40:319–384

    Article  CAS  PubMed  Google Scholar 

  8. Studer D, Humbel BM, Chiquet M (2008) Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution. Histochem Cell Biol 130:877–889

    Article  CAS  PubMed  Google Scholar 

  9. Möbius W et al (2010) Electron microscopy of the mouse central nervous system. In: Methods in cell biology, vol 96. Elsevier, Burlington, MA, pp 475–512

    Google Scholar 

  10. Möbius W, Nave K-A, Werner HB (2016) Electron microscopy of myelin: structure preservation by high-pressure freezing. Brain Res 1641:92–100

    Article  PubMed  CAS  Google Scholar 

  11. Lučić V, Leis A, Baumeister W (2008) Cryo-electron tomography of cells: connecting structure and function. Histochem Cell Biol 130:185–196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kizilyaprak C, Daraspe J, Humbel BM (2014) Focused ion beam scanning electron microscopy in biology: focused ion beam scanning electron microscopy. J Microsc 254:109–114

    Article  CAS  PubMed  Google Scholar 

  13. Steyer AM et al (2020) Pathology of myelinated axons in the PLP-deficient mouse model of spastic paraplegia type 2 revealed by volume imaging using focused ion beam-scanning electron microscopy. J Struct Biol 210:107492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weigert C (1885) Eine vergesserung der Haematoxylin Blutlaugen-salzmethod fur das Centranlnervensystem. Fortschr Deutsch Med 3:236–239

    Google Scholar 

  15. Clark SL, Ward JW (1934) A variation of the Pal Weigert method for staining myelin sheaths. Stain Technol 9:53–55

    Article  Google Scholar 

  16. Weil A (1928) A rapid method for staining myelin sheaths. Arch Neurol Psychiatry 20:392

    Article  Google Scholar 

  17. Berube GR, Powers MM, Clark G (1965) Iron hematoxylin chelates: II. Histochemistry of myelin sheath stains. Stain Technol 40:235–238

    Article  CAS  PubMed  Google Scholar 

  18. Klüver H, Barrera E (1953) A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol 12:400–403

    Article  PubMed  Google Scholar 

  19. Hori SH (1963) A simplified acid Hematein test for phospholipids. Stain Technol 38:221–225

    Article  CAS  PubMed  Google Scholar 

  20. Meier C (1976) Some observations on early myelination in the human spinal cord. Light and electron microscope study. Brain Res 104:21–32

    Article  CAS  PubMed  Google Scholar 

  21. Meywald T, Scherthan H, Nagl W (2004) Increased specificity of colloidal silver staining by means of chemical attenuation. Hereditas 124:63–70

    Article  Google Scholar 

  22. Jain N (1998) A histologically visible representation of the fingers and palm in primate area 3b and its immutability following long-term deafferentations. Cereb Cortex 8:227–236

    Article  CAS  PubMed  Google Scholar 

  23. Pistorio AL, Hendry SH, Wang X (2006) A modified technique for high-resolution staining of myelin. J Neurosci Methods 153:135–146

    Article  CAS  PubMed  Google Scholar 

  24. Valério-Gomes B, Guimarães DM, Szczupak D, Lent R (2018) The absolute number of oligodendrocytes in the adult mouse brain. Front Neuroanat 12:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Nishiyama A, Lin X-H, Giese N, Heldin C-H, Stallcup WB (1996) Co-localization of NG2 proteoglycan and PDGF ?-receptor on O2A progenitor cells in the developing rat brain. J Neurosci Res 43:299–314

    Article  CAS  PubMed  Google Scholar 

  26. Scherer SS et al (1994) Differential regulation of the 2′,3′-cyclic nucleotide 3′-phosphodiesterase gene during oligodendrocyte development. Neuron 12:1363–1375

    Article  CAS  PubMed  Google Scholar 

  27. Bhat RV et al (1996) Expression of the APC tumor suppressor protein in oligodendroglia. Glia 17:169–174

    Article  CAS  PubMed  Google Scholar 

  28. Stelzer EHK et al (2021) Light sheet fluorescence microscopy. Nat Rev Methods Primers 1:73

    Article  CAS  Google Scholar 

  29. Werner C, Sauer M, Geis C (2021) Super-resolving microscopy in neuroscience. Chem Rev 121:11971–12015

    Article  CAS  PubMed  Google Scholar 

  30. Rusch H et al (2022) Finding the best clearing approach—towards 3D wide-scale multimodal imaging of aged human brain tissue. NeuroImage 247:118832

    Article  CAS  PubMed  Google Scholar 

  31. Ryan DP et al (2017) Automatic and adaptive heterogeneous refractive index compensation for light-sheet microscopy. Nat Commun 8:612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gao R et al (2019) Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 363:eaau8302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Duan R et al (2021) Novel insight into the potential pathogenicity of mitochondrial dysfunction resulting from PLP1 duplication mutations in patients with Pelizaeus–Merzbacher disease. Neuroscience 476:60–71

    Article  CAS  PubMed  Google Scholar 

  34. Abe Y et al (2019) Correlative study using structural MRI and super-resolution microscopy to detect structural alterations induced by long-term optogenetic stimulation of striatal medium spiny neurons. Neurochem Int 125:163–174

    Article  CAS  PubMed  Google Scholar 

  35. Hainsworth AH et al (2018) Super-resolution imaging of subcortical white matter using stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI). Neuropathol Appl Neurobiol 44:417–426

    Article  CAS  PubMed  Google Scholar 

  36. Steshenko O et al (2016) Reorganization of lipid diffusion by myelin basic protein as revealed by STED nanoscopy. Biophys J 110:2441–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Micu I et al (2007) Real-time measurement of free Ca2+ changes in CNS myelin by two-photon microscopy. Nat Med 13:874–879

    Article  CAS  PubMed  Google Scholar 

  38. Fu Y, Huff TB, Wang H-W, Cheng J-X, Wang H (2008) Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy. Opt Express 16:19396

    Article  CAS  PubMed  Google Scholar 

  39. Zhai Y-H et al (2011) Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator. Appl Phys Lett 98:191106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Meyer T et al (2013) Expanding multimodal microscopy by high spectral resolution coherent anti-stokes Raman scattering imaging for clinical disease diagnostics. Anal Chem 85:6703–6715

    Article  CAS  PubMed  Google Scholar 

  41. Micu I, Brideau C, Lu L, Stys PK (2017) Effects of laser polarization on responses of the fluorescent Ca2+ indicator X-Rhod-1 in neurons and myelin. Neurophoton 4:025002

    Article  Google Scholar 

  42. Wu W, Li X, Qu JY, He S (2021) In vivo imaging of biological tissues with combined two-photon fluorescence and stimulated Raman scattering microscopy. J Vis Exp 178:63411. https://doi.org/10.3791/63411

    Article  CAS  Google Scholar 

  43. Bélanger E et al (2012) Live animal myelin histomorphometry of the spinal cord with video-rate multimodal nonlinear microendoscopy. J Biomed Opt 17:021107

    Article  PubMed  Google Scholar 

  44. Okada SLM, Stivers NS, Stys PK, Stirling DP (2014) An ex vivo laser-induced spinal cord injury model to assess mechanisms of axonal degeneration in real-time. J Vis Exp 93:52173. https://doi.org/10.3791/52173

    Article  CAS  Google Scholar 

  45. Stivers NS et al (2017) The toll-like receptor 2 agonist Pam3CSK4 is neuroprotective after spinal cord injury. Exp Neurol 294:1–11

    Article  CAS  PubMed  Google Scholar 

  46. Chu S-W et al (2002) Nonlinear bio-photonic crystal effects revealed with multimodal nonlinear microscopy. J Microsc 208:190–200

    Article  PubMed  Google Scholar 

  47. Huang JY, Chen Z, Lewis A (1989) Second-harmonic generation in purple membrane-poly(vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412. J Phys Chem 93:3314–3320

    Article  CAS  Google Scholar 

  48. Jin L et al (2006) Characterization and application of a new optical probe for membrane lipid domains. Biophys J 90:2563–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moen EK, Ibey BL, Beier HT (2014) Detecting subtle plasma membrane perturbation in living cells using second harmonic generation imaging. Biophys J 106:L37–L40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nuriya M et al (2016) Multimodal two-photon imaging using a second harmonic generation-specific dye. Nat Commun 7:11557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garduno-Robles A et al (2020) MRI features in a rat model of H-ABC tubulinopathy. Front Neurosci 14:555

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rehberg M, Krombach F, Pohl U, Dietzel S (2011) Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy. PLoS One 6:e28237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Farrar MJ, Wise FW, Fetcho JR, Schaffer CB (2011) In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy. Biophys J 100:1362–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Witte S et al (2011) Label-free live brain imaging and targeted patching with third-harmonic generation microscopy. Proc Natl Acad Sci 108:5970–5975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Anzalone A et al (2018) Feasibility study on mouse live imaging after spinal cord injury and poly(lactide-co-glycolide) bridge implantation. J Biomed Opt 23:1

    Article  PubMed  Google Scholar 

  56. Redlich MJ, Lim H (2019) A method to measure myeloarchitecture of the murine cerebral cortex in vivo and ex vivo by intrinsic third-harmonic generation. Front Neuroanat 13:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Redlich MJ et al (2021) High-pulse-energy multiphoton imaging of neurons and oligodendrocytes in deep murine brain with a fiber laser. Sci Rep 11:7950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chorghay Z et al (2021) Activity-dependent alteration of early myelin ensheathment in a developing sensory circuit. J Comp Neurol 530:25253. https://doi.org/10.1002/cne.25253

    Article  CAS  Google Scholar 

  59. Pezacki JP et al (2011) Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat Chem Biol 7:137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang H, Fu Y, Zickmund P, Shi R, Cheng J-X (2005) Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues. Biophys J 89:581–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gasecka A, Daradich A, Dehez H, Piché M, Côté D (2013) Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy. Opt Lett 38:4510

    Article  CAS  PubMed  Google Scholar 

  62. Lucas A, Poleg S, Klug A, McCullagh EA (2021) Myelination deficits in the auditory brainstem of a mouse model of fragile X syndrome. Front Neurosci 15:772943

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tamosaityte S et al (2016) Inflammation-related alterations of lipids after spinal cord injury revealed by Raman spectroscopy. J Biomed Opt 21:061008

    Article  Google Scholar 

  64. Costantini I et al (2021) Autofluorescence enhancement for label-free imaging of myelinated fibers in mammalian brains. Sci Rep 11:8038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fowler SD, Greenspan P (1985) Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O. J Histochem Cytochem 33:833–836

    Article  CAS  PubMed  Google Scholar 

  66. Prioli S, Reinholdt P, Hornum M, Kongsted J (2019) Rational design of Nile red analogs for sensing in membranes. J Phys Chem B 123:10424–10432

    Article  CAS  PubMed  Google Scholar 

  67. Teo W et al (2021) Nile red fluorescence spectroscopy reports early physicochemical changes in myelin with high sensitivity. Proc Natl Acad Sci USA 118:e2016897118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sakdinawat A, Attwood D (2010) Nanoscale X-ray imaging. Nat Photon 4:840–848

    Article  CAS  Google Scholar 

  69. Dučić T et al (2011) Structure and composition of myelinated axons: a multimodal synchrotron spectro-microscopy study. J Struct Biol 173:202–212

    Article  PubMed  CAS  Google Scholar 

  70. Töpperwien M et al (2017) Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based X-ray phase-contrast tomography. Sci Rep 7:42847

    Article  PubMed  PubMed Central  Google Scholar 

  71. Carboni E et al (2017) Imaging of neuronal tissues by X-ray diffraction and X-ray fluorescence microscopy: evaluation of contrast and biomarkers for neurodegenerative diseases. Biomed Opt Express 8:4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jensen TH et al (2011) Brain tumor imaging using small-angle X-ray scattering tomography. Phys Med Biol 56:1717–1726

    Article  PubMed  Google Scholar 

  73. Lwin T-T, Yoneyama A, Maruyama H, Takeda T (2021) Visualization ability of phase-contrast synchrotron-based X-ray imaging using an X-ray interferometer in soft tissue tumors. Technol Cancer Res Treat 20. https://doi.org/10.1177/15330338211010121

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Piazza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piazza, V., Hernandez, V.H. (2022). Myelin Imaging. In: Mazumder, N., Gangadharan, G., Kistenev, Y.V. (eds) Advances in Brain Imaging Techniques. Springer, Singapore. https://doi.org/10.1007/978-981-19-1352-5_5

Download citation

Publish with us

Policies and ethics