Skip to main content

UAVs Path Planning by Particle Swarm Optimization Based on Visual-SLAM Algorithm

  • Chapter
  • First Online:
Intelligent Unmanned Air Vehicles Communications for Public Safety Networks

Part of the book series: Unmanned System Technologies ((UST))

Abstract

Intelligent 3-D path planning is a crucial aspect of an unmanned aerial vehicle's (UAVs) autonomous flight system. In this chapter, we propose a two-step centralized system for developing a 3-D path-planning for a swarm of UAVs. We trace the UAV position while simultaneously constructing an incremental and progressive map of the environment using visual simultaneous localization and mapping (V-SLAM) method. We introduce a corner-edge points matching mechanism for stabilizing the V-SLAM system in the least extracted map points. In this instance, a single UAV performs the function using monocular vision for mapping an area of interest. We use the particle swarm optimization (PSO) algorithm to optimize paths for multi-UAVs. We also propose a path updating mechanism based on region sensitivity (RS) to avoid sensitive areas if any hazardous events are detected during the execution of the final path. Moreover, the dynamic fitness function (DFF) is developed to evaluate path planning performance while considering various optimization parameters such as flight risk estimation, energy consumption, and operation completion time. This system achieves high fitness value and safely arrives at the destination while avoiding collisions and restricted areas, which validates the efficiency of proposed PSO-VSLAM system as demonstrated by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid I, Leonard JJ (2016) Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans Rob 32(6):1309–1332

    Article  Google Scholar 

  2. Trujillo JC, Munguia R, Guerra E, Grau A (2018) Cooperative monocular-based SLAM for multi-UAV systems in GPS-denied environments. Sensors 18(5):1351

    Article  Google Scholar 

  3. Du H, Wang W, Xu C, Xiao R, Sun C (2020) Real-time onboard 3D state estimation of an unmanned aerial vehicle in multi-environments using multi-sensor data fusion. Sensors 20(3):919

    Article  Google Scholar 

  4. Ramezani M, Tinchev G, Iuganov E, Fallon M (May 2020) Online LiDAR-SLAM for legged robots with robust registration and deep-learned loop closure. In: 2020 IEEE international conference on robotics and automation (ICRA), pp 4158–4164

    Google Scholar 

  5. Stentz A, Fox D, Montemerlo M (2003) Fastslam: a factored solution to the simultaneous localization and mapping problem with unknown data association. In: Proceedings of the AAAI national conference on artificial intelligence

    Google Scholar 

  6. Loo SY, Mashohor S, Tang SH, Zhang H (2020) DeepRelativeFusion: dense monocular SLAM using single-image relative depth prediction. arXiv:2006.04047

    Google Scholar 

  7. Shakhatreh H, Sawalmeh AH, Al-Fuqaha A, Dou Z, Almaita E, Khalil I, Othman NS, Khreishah A, Guizani M (2019) Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access 7:48572–48634

    Article  Google Scholar 

  8. Mughal UA, Xiao J, Ahmad I, Chang K (2020) Cooperative resource management for C-V2I communications in a dense urban environment. Veh Commun 26:100282

    Google Scholar 

  9. Mughal UA, Ahmad I, Chang K (2019) Virtual cells operation for 5G V2X communications. In: Proceedings of KICS, pp 1486–1487

    Google Scholar 

  10. Shakoor S, Kaleem Z, Baig MI, Chughtai O, Duong TQ, Nguyen LD (2019) Role of UAVs in public safety communications: energy efficiency perspective. IEEE Access 7:140665–140679

    Article  Google Scholar 

  11. Wen S, Zhao Y, Yuan X, Wang Z, Zhang D, Manfredi L (2020) Path planning for active SLAM based on deep reinforcement learning under unknown environments. Intell Serv Robot 1–10

    Google Scholar 

  12. Kalogeiton VS, Ioannidis K, Sirakoulis GC, Kosmatopoulos EB (2019) Real-time active SLAM and obstacle avoidance for an autonomous robot based on stereo vision. Cybern Syst 50(3):239–260

    Article  Google Scholar 

  13. Doitsidis L, Weiss S, Renzaglia A, Achtelik MW, Kosmatopoulos E, Siegwart R, Scaramuzza D (2012) Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision. Auton Robot 33(1):173–188

    Article  Google Scholar 

  14. Alzugaray I, Teixeira L, Chli M (May 2017) Short-term UAV path-planning with monocular-inertial SLAM in the loop. In: 2017 IEEE international conference on robotics and automation (ICRA), pp 2739–2746

    Google Scholar 

  15. Sánchez-García J, Reina DG, Toral SL (2019) A distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenario. Futur Gener Comput Syst 90:129–148

    Article  Google Scholar 

  16. Shi W, Li J, Xu W, Zhou H, Zhang N, Zhang S, Shen X (2018) Multiple drone-cell deployment analyses and optimization in drone assisted radio access networks. IEEE Access 6:12518–12529

    Article  Google Scholar 

  17. Ghamry KA, Kamel MA, Zhang Y (June 2017) Multiple UAVs in forest fire fighting mission using particle swarm optimization. In: 2017 International conference on unmanned aircraft systems (ICUAS), pp 1404–1409

    Google Scholar 

  18. Cheng Z, Wang E, Tang Y, Wang Y (2014) Real-time path planning strategy for UAV based on improved particle swarm optimization. JCP 9(1):209–214

    Google Scholar 

  19. Bircher A, Kamel M, Alexis K, Oleynikova H, Siegwart R (May 2016) Receding horizon “next-best-view” planner for 3d exploration. In: 2016 IEEE international conference on robotics and automation (ICRA), pp 1462–1468

    Google Scholar 

  20. Teng H, Ahmad I, Msm A, Chang K (2020) 3D optimal surveillance trajectory planning for multiple UAVs by using particle swarm optimization with surveillance area priority. IEEE Access 8:86316–86327

    Article  Google Scholar 

  21. Pattanayak S, Choudhury BB (2021) Modified crash-minimization path designing approach for autonomous material handling robot. Evol Intel 14(1):21–34

    Article  Google Scholar 

  22. Yu X, Li C, Zhou J (2020) A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios. Knowl-Based Syst 204:106209

    Google Scholar 

  23. Dasdemir E, Köksalan M, Öztürk DT (2020) A flexible reference point-based multi-objective evolutionary algorithm: an application to the UAV route planning problem. Comput Oper Res 114:104811

    Google Scholar 

  24. Qu C, Gai W, Zhang J, Zhong M (2020) A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning. Knowl-Based Syst 194, 105530

    Google Scholar 

  25. Atencia CR, Del Ser J, Camacho D (2019) Weighted strategies to guide a multi-objective evolutionary algorithm for multi-UAV mission planning. Swarm Evol Comput 44:480–495

    Article  Google Scholar 

  26. Shakoor S, Kaleem Z, Do DT, Dobre OA, Jamalipour A (2020) Joint optimization of UAV 3D placement and path loss factor for energy efficient maximal coverage. IEEE Internet Things J 9776–9786

    Google Scholar 

  27. Do-Duy T, Nguyen LD, Duong TQ, Khosravirad S, Claussen H (2021) Joint optimisation of real-time deployment and resource allocation for UAV-Aided disaster emergency communications. IEEE J Sel Areas Commun 1–14

    Google Scholar 

  28. Nguyen KK, Vien NA, Nguyen LD, Le MT, Hanzo L, Duong TQ (2020) Real-time energy harvesting aided scheduling in UAV-assisted D2D networks relying on deep reinforcement learning. IEEE Access 9:3638–3648

    Article  Google Scholar 

  29. Do DT, Nguyen TTT, Le CB, Voznak M, Kaleem Z, Rabie KM (2020) UAV relaying enabled NOMA network with hybrid duplexing and multiple antennas. IEEE Access 8:186993–187007

    Article  Google Scholar 

  30. Kaleem Z, Yousaf M, Qamar A, Ahmad A, Duong TQ, Choi W, Jamalipour A (2019) UAV-empowered disaster-resilient edge architecture for delay-sensitive communication. IEEE Network 33(6):124–132

    Article  Google Scholar 

  31. Zhou H, Zhang T, Jagadeesan J (2018) Re-weighting and 1-point RANSAC-Based P $ n $ n P solution to handle outliers. IEEE Trans Pattern Anal Mach Intell 41(12):3022–3033

    Google Scholar 

  32. Chum O, Matas J (June 2005) Matching with PROSAC-progressive sample consensus. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05), vol 1, pp 220–226

    Google Scholar 

  33. Bellavia F, Tegolo D, Valenti C (2011) Improving Harris corner selection strategy. IET Comput Vision 5(2):87–96

    Article  MathSciNet  Google Scholar 

  34. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 6:679–698

    Article  Google Scholar 

  35. Karami E, Prasad S, Shehata M (2017) Image matching using SIFT, SURF, BRIEF and ORB: performance comparison for distorted images. arXiv:1710.02726

    Google Scholar 

  36. Ohta Y, Kanade T (1985) Stereo by intra-and inter-scanline search using dynamic programming. IEEE Trans Pattern Anal Mach Intell 2:139–154

    Article  Google Scholar 

  37. Lowe DG (1991) Fitting parameterized three-dimensional models to images. IEEE Trans Pattern Anal Mach Intell 13(5):441–450

    Article  Google Scholar 

  38. Zheng C, Li L, Xu F, Sun F, Ding M (2005) Evolutionary route planner for unmanned air vehicles. IEEE Trans Rob 21(4):609–620

    Article  Google Scholar 

  39. Kennedy J, Eberhart R (Nov 1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks, vol 4, pp 1942–1948

    Google Scholar 

  40. Roberge V, Tarbouchi M, Labonté G (2012) Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans Industr Inf 9(1):132–141

    Article  Google Scholar 

  41. Fonder M, Van Droogenbroeck M (2019) Mid-air: a multi-modal dataset for extremely low altitude drone flights. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp 0–0

    Google Scholar 

  42. Guo X, Chen S, Lin H, Wang H, Wang S (July 2017) A 3D terrain meshing method based on discrete point cloud. In: 2017 IEEE international conference on information and automation (ICIA), pp 12–17

    Google Scholar 

  43. Kneip L, Scaramuzza D, Siegwart R (2011) A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. CVPR 2011:2969–2976

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) under Grant NRF-2019R1F1A1061696.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KyungHi Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mughal, U.A., Ahmad, I., Pawase, C.J., Chang, K. (2022). UAVs Path Planning by Particle Swarm Optimization Based on Visual-SLAM Algorithm. In: Kaleem, Z., Ahmad, I., Duong, T.Q. (eds) Intelligent Unmanned Air Vehicles Communications for Public Safety Networks. Unmanned System Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-1292-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1292-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1291-7

  • Online ISBN: 978-981-19-1292-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics