Skip to main content

Food Enzymes: General Properties and Kinetics

  • Chapter
  • First Online:
Novel Food Grade Enzymes
  • 643 Accesses

Abstract

Enzymes are the biocatalysts having a catalytic power that speeds up a chemical reaction without changing the equilibrium of the reaction. Almost all enzymes are protein in nature and the biocatalytic power lies in the integrity of their structural conformation. The enzymes are highly specific with their substrate molecules that convert into the product by decreasing the activation energy, without getting changed itself. However, the biocatalytic power of the enzymes also depends on several physico-chemical parameters such as temperature, pH, salt concentrations, etc. of the reaction. The enzyme catalysis can be quantitatively revealed by the enzyme kinetics mechanism which measures the reaction rates and the affinity of enzymes towards the substrates and inhibitors. The enzymes can be isolated from the various biological factories such as plant, animal, or microbial cells depending upon the type of enzyme. However, in order to produce at large scale, the microbial sources are the best choice which can effectively reduce the production and purification cost of enzymes. The enzymes are widely used in various sectors such as agriculture, environmental, leather tanning, paper and pulp, chemical and pharmaceutical, detergent, food and beverages, etc. In this chapter, we are mainly focussing on the role of enzymes in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnes-Svarney, P., & Svarney, T. E. (2014). The handy biology answer book. Visible Ink Press.

    Google Scholar 

  • Bisswanger, H. (2017). Enzyme kinetics: Principles and methods. John Wiley & Sons.

    Book  Google Scholar 

  • Boyce, S., & Tipton, K. F. (2001). Enzyme classification and nomenclature. eLS. https://doi.org/10.1038/npg.els.0000710

  • Dai, N., Schaffer, A. A., Petreikov, M., & Granot, D. (1995). Arabidopsis thaliana hexokinase cDNA isolated by complementation of yeast cells. Plant Physiology, 108(2), 879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Enshasy, H. A., Elsayed, E. A., Suhaimi, N., Abd Malek, R., & Esawy, M. (2018). Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnology, 18(1), 71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Faulds, C. B., Mandalari, G., LoCurto, R., Bisignano, G., & Waldron, K. W. (2004). Arabinoxylan and mono-and dimeric ferulic acid release from brewer’s grain and wheat bran by feruloyl esterases and glycosyl hydrolases from humicolainsolens. Applied Microbiology and Biotechnology, 64(5), 644–650.

    Article  CAS  PubMed  Google Scholar 

  • Gazel, N., & Yildiz, H. B. (2016). Enzyme-based biosensors in food industry via surface modifications. In Surface treatments for biological, chemical, and physical applications (pp. 227–252). Wiley.

    Chapter  Google Scholar 

  • Gramss, G., & Rudeschko, O. (1998). Activities of oxidoreductase enzymes in tissue extracts and sterile root exudates of three crop plants, and some properties of the peroxidase component. New Phytologist, 138(3), 401–409.

    Article  CAS  Google Scholar 

  • Heinstra, P. W., Geer, B. W., Seykens, D., & Langevin, M. (1989). The metabolism of ethanol-derived acetaldehyde by alcohol dehydrogenase (EC 1.1. 1.1) and aldehyde dehydrogenase (EC 1.2. 1.3) in Drosophila melanogaster larvae. Biochemical Journal, 259(3), 791–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, S. K., Chiu, A. W. H., Pu, Y. S., Huang, Y. K., Chung, C. J., Tsai, H. J., et al. (2008). Arsenic methylation capability, heme oxygenase-1 and NADPH quinone oxidoreductase-1 genetic polymorphisms and the stage and grade of urothelial carcinomas. Urologia Internationalis, 80(4), 405–412.

    Article  CAS  PubMed  Google Scholar 

  • Huhtanen, P., & Khalili, H. (1992). The effect of sucrose supplements on particle-associated carboxymethylcellulase (EC 3.2. 1.4) and xylanase (EC 3.2. 1.8) activities in cattle given grass-silage-based diet. British Journal of Nutrition, 67(2), 245–255.

    Article  CAS  PubMed  Google Scholar 

  • Janeček, S. (2009). Amylolytic enzymes-focus on the alpha-amylases from archaea and plants. Nova Biotechnologica et Chimica, 9(1), 5–25.

    Article  Google Scholar 

  • Kiess, M., Hecht, H. J., & Kalisz, H. M. (1998). Glucose oxidase from Penicillium amagasakiense: Primary structure and comparison with other glucose-methanol-choline (GMC) oxidoreductases. European Journal of Biochemistry, 252(1), 90–99.

    Article  CAS  PubMed  Google Scholar 

  • Kilcawley, K. N., Wilkinson, M. G., & Fox, P. F. (1998). Enzyme-modified cheese. International Dairy Journal, 8(1), 1–10.

    Article  CAS  Google Scholar 

  • Kohler, R. (1971). The background to Eduard Buchner’s discovery of cell-free fermentation. Journal of the History of Biology, 4, 35–61.

    Article  CAS  PubMed  Google Scholar 

  • Kouker, G., & Jaeger, K. E. (1987). Specific and sensitive plate assay for bacterial lipases. Applied and Environmental Microbiology, 53(1), 211–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhajda, F. P., et al. (2011). Pharmacological glycerol-3-phosphate acyltransferase inhibition decreases food intake and adiposity and increases insulin sensitivity in diet-induced obesity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 301(1), R116–R130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S., Yang, X., Yang, S., Zhu, M., & Wang, X. (2012). Technology prospecting on enzymes: Application, marketing and engineering. Computational and Structural Biotechnology Journal, 2(3), e201209017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marseglia, A., Castellazzi, A. M., Valsecchi, C., Licari, A., Piva, G., Rossi, F., Fiorentini, L., & Marseglia, G. L. (2013). Outcome of oral provocation test in egg-sensitive children receiving semi-fat hard cheese Grana Padano PDO (protected designation of origin) containing, or not, lysozyme. European Journal of Nutrition, 52(3), 877–883.

    Article  CAS  PubMed  Google Scholar 

  • Martín, M. A., Ramos, S., Granado-Serrano, A. B., Rodríguez-Ramiro, I., Trujillo, M., Bravo, L., & Goya, L. (2010). Hydroxytyrosol induces antioxidant/detoxificant enzymes and Nrf2 translocation via extracellular regulated kinases and phosphatidylinositol-3-kinase/protein kinase B pathways in HepG2 cells. Molecular Nutrition & Food Research, 54(7), 956–966.

    Article  Google Scholar 

  • McComb, R. B., Bowers Jr, G. N., & Posen, S. (2013). Alkaline phosphatase. Springer Science & Business Media.

    Google Scholar 

  • Morisseau, C., Schebb, N. H., Dong, H., Ulu, A., Aronov, P. A., & Hammock, B. D. (2012). Role of soluble epoxide hydrolase phosphatase activity in the metabolism of lysophosphatidic acids. Biochemical and Biophysical Research Communications, 419(4), 796–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandakumar, J., Nair, P. A., & Shuman, S. (2007). Last stop on the road to repair: Structure of E. coli DNA ligase bound to nicked DNA-adenylate. Molecular Cell, 26(2), 257–271.

    Article  CAS  PubMed  Google Scholar 

  • Nawaz, M. A., Karim, A., Aman, A., Marchetti, R., Qader, S. A. U., & Molinaro, A. (2015). Continuous degradation of maltose: Improvement in stability and catalytic properties of maltase (α-glucosidase) through immobilization using agar-agar gel as a support. Bioprocess and Biosystems Engineering, 38(4), 631–638.

    Article  CAS  PubMed  Google Scholar 

  • Orita, M., Yamamoto, S., Katayama, N., Aoki, M., Takayama, K., Yamagiwa, Y., & Takeuchi, M. (2001). Coumarin and chromen-4-one analogues as tautomerase inhibitors of macrophage migration inhibitory factor: Discovery and X-ray crystallography. Journal of Medicinal Chemistry, 44(4), 540–547.

    Article  CAS  PubMed  Google Scholar 

  • Perrier, J., Durand, A., Giardina, T., & Puigserver, A. (2005). Catabolism of intracellular N-terminal acetylated proteins: Involvement of acylpeptide hydrolase and acylase. Biochimie, 87(8), 673–685.

    Article  CAS  PubMed  Google Scholar 

  • Portevin, D., de Sousa-D’Auria, C., Montrozier, H., Houssin, C., Stella, A., Lanéelle, M. A., et al. (2005). The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth identification of the carboxylation product and determination of the ACYL-CoA carboxylase components. Journal of Biological Chemistry, 280(10), 8862–8874.

    Article  CAS  PubMed  Google Scholar 

  • Pumirat, P., Vanaporn, M., Pinweha, P., Tandhavanant, S., Korbsrisate, S., & Chantratita, N. (2014). The role of short-chain dehydrogenase/oxidoreductase, induced by salt stress, on host interaction of B. pseudomallei. BMC Microbiology, 14(1), 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Punekar, N. S. (2018). Enzymes. Springer.

    Google Scholar 

  • Rhimi, M., Haser, R., & Aghajari, N. (2008). Bacterial sucrose isomerases: Properties and structural studies. Biologia, 63(6), 1020.

    Article  CAS  Google Scholar 

  • Shibata, N., Tamagaki, H., Hieda, N., Akita, K., Komori, H., Shomura, Y., & Toraya, T. (2010). Crystal structures of ethanolamine ammonia-lyase complexed with coenzyme B12 analogs and substrates. Journal of Biological Chemistry, 285(34), 26484–26493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shixian, Q., VanCrey, B., Shi, J., Kakuda, Y., & Jiang, Y. (2006). Green tea extract thermogenesis-induced weight loss by epigallocatechin gallate inhibition of catechol-O-methyltransferase. Journal of Medicinal Food, 9(4), 451–458.

    Article  CAS  PubMed  Google Scholar 

  • Smit, B. A., Engels, W. J., & Smit, G. (2009). Branched chain aldehydes: Production and breakdown pathways and relevance for flavour in foods. Applied Microbiology and Biotechnology, 81(6), 987–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza, P. M. D. (2010). Application of microbial α-amylase in industry—A review. Brazilian Journal of Microbiology, 41(4), 850–861.

    Article  PubMed  PubMed Central  Google Scholar 

  • Staudigl, P., Haltrich, D., & Peterbauer, C. K. (2014). L-Arabinose isomerase and D-xylose isomerase from Lactobacillus reuteri: Characterization, coexpression in the food grade host Lactobacillus plantarum, and application in the conversion of D-galactose and D-glucose. Journal of Agricultural and Food Chemistry, 62(7), 1617–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapre, A. R., & Jain, R. K. (2014). Pectinases: Enzymes for fruit processing industry. International Food Research Journal, 21(2), 447–453.

    CAS  Google Scholar 

  • van der Werf, M. J., van den Tweel, W. J., Kamphuis, J., Hartmans, S., & de Bont, J. A. (1994). The potential of lyases for the industrial production of optically active compounds. Trends in Biotechnology, 12(3), 95–103.

    Article  PubMed  Google Scholar 

  • Vanderlinde, R. E. (1985). Measurement of total lactate dehydrogenase activity. Annals of Clinical and Laboratory Science, 15(1), 13–31.

    CAS  PubMed  Google Scholar 

  • Vu, T. K. H., & Le, V. V. M. (2008). Biochemical studies on the immobilization of the enzyme invertase (EC. 3.2. 1.26) in alginate gel and its kinetics. ASEAN Food Journal, 15(1), 73–78.

    CAS  Google Scholar 

  • Wilson, T. E., Grawunder, U., & Lieber, M. R. (1997). Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature, 388(6641), 495–498.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khade, S.M., Srivastava, S.K., Kamble, L.H., Srivastava, J. (2022). Food Enzymes: General Properties and Kinetics. In: Dutt Tripathi, A., Darani, K.K., Srivastava, S.K. (eds) Novel Food Grade Enzymes . Springer, Singapore. https://doi.org/10.1007/978-981-19-1288-7_1

Download citation

Publish with us

Policies and ethics