Skip to main content

Feature Enhanced and Context Inference Network for Pancreas Segmentation

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1566))

  • 566 Accesses

Abstract

Segmenting pancreas from CT images is of great significance for clinical diagnosis and research. Traditional encoder-decoder networks, which are widely used in medical image segmentation, may fail to address low tissue contrast and large variability of pancreas shape and size due to underutilization of multi-level features and context information. To address these problems, this paper proposes a novel feature enhanced and context inference network (FECI-Net) for pancreas segmentation. Specifically, features are enhanced by imposing saliency region constraints to mine complementary regions and details between multi-level features; Gated Recurrent Unit convolution (ConvGRU) is introduced in the decoder to fully contact the context aimed to capture task-relevant fine features. By comparing experimental evaluations on the NIH-TCIA dataset, our method improves IOU and Dice by 5.5% and 4.1% respectively compared to the baseline, which outperforms current state-of-the-art medical image segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Z., Fan, J., Ren, Y., Tang, L.: A novel feature extraction approach based on neighborhood rough set and PCA for migraine rs-fMRI. J. Intell. Fuzzy Syst. 38(6), 1–11 (2020)

    Google Scholar 

  2. Patil, D.D., Deore, S.G.: Medical image segmentation: a review. Int. J. Comput. Sci. Mob. Comput. 2(1), 22–27 (2013)

    Google Scholar 

  3. Liu, Y., Chen, S.: Review of medical image segmentation method. Electr. Sci. Technol. 30(8), 169–172 (2017)

    Google Scholar 

  4. Popilock, R., Sandrasagaren, K., Harris, L., et al.: CT artifact recognition for the nuclear technologist. J. Nucl. Med. Technol. 36(2), 79–81 (2008)

    Article  Google Scholar 

  5. Cui, Z., Xue, F., Cai, X., Cao, Y., Wang, G., Chen, J.: Detection of malicious code variants based on deep learning. IEEE Trans. Industr. Inf. 14(7), 3187–3196 (2018)

    Article  Google Scholar 

  6. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018: 15th European Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part VII, pp. 833–851. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  7. Zhao, H.S., Shi, J.P., Qi, X.J., Wang, X.G., Jia, J.Y.: Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 6230–6239. Honolulu, HI, USA (2017)

    Google Scholar 

  8. Kumar, N., Hoffmann, N., Oelschlägel, M., Koch, E., Kirsch, M., Gumhold, S.: Structural similarity based anatomical and functional brain imaging fusion. In: Zhu, D., et al. (eds.) MBIA/MFCA -2019. LNCS, vol. 11846, pp. 121–129. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33226-6_14

    Chapter  Google Scholar 

  9. Vo, X.-T., Tran, T.-D., Nguyen, D.-L., Jo, K.-H.: Stair-step feature pyramid networks for object detection. In: Jeong, H., Sumi, K. (eds.) IW-FCV 2021. CCIS, vol. 1405, pp. 168–175. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81638-4_13

    Chapter  Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested u-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  12. Huang, H., et al.: UNet 3+: a full-scale connected UNet for medical image segmentation. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055–1059. Barcelona, Spain (2020)

    Google Scholar 

  13. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  14. Kaku, A., Hegde, C.V., Huang, J., et al.: DARTS: DenseUnet-based automatic rapid tool for brain segmentation. arXiv preprint arXiv:1911.05567 (2019)

  15. Yu, Q., et al.: Crosslink-Net: double-branch encoder segmentation network via fusing vertical and horizontal convolutions. arXiv preprint arXiv:2107.11517 (2021)

  16. Gu, Z., et al.: CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Article  Google Scholar 

  17. Anderson, P., et al.: Bottom-Up and top-down attention for image captioning and visual question answering. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6077–6086. Salt Lake City, UT, USA (2018)

    Google Scholar 

  18. Bahdanau, D., et al.: Neural machine translation by jointly learning to align and translate. CoRR abs/1409.0473 (2015)

    Google Scholar 

  19. Liang, L., Cao, J., Li, X., You, J.: Improvement of residual attention network for image classification. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds.) IScIDE 2019. LNCS, vol. 11935, pp. 529–539. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36189-1_44

    Chapter  Google Scholar 

  20. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  21. Oktay, O., Schlemper, J., Folgoc, L., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  22. Sinha, A., Dolz, J.: Multi-scale self-guided attention for medical image segmentation. IEEE J. Biomed. Health Inform. 25(1), 121–130 (2021)

    Article  Google Scholar 

  23. Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

    Chapter  Google Scholar 

  24. Wang, Y., Ni, Z., Song, S., et al.: Revisiting locally supervised learning: an alternative to end-to-end training. In: International Conference on Learning Representations (2021)

    Google Scholar 

  25. Ballas, Nicolas, et al.: Delving deeper into convolutional networks for learning video representations. arXiv preprint arXiv:1511.06432 (2015)

  26. Roth, H., Farag, A., Turkbey, E.B., Lu, L., Liu, R.M.: Data from pancreas-CT. Cancer Imag. Arch. (2016). https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their valuable comments and suggestions. This work is supported by Shandong Provincial Natural Science Foundation of China under Grant ZR2018MF009, the State Key Research Development Program of China under Grant 2017YFC0804406, the Taishan Scholars Program of Shandong Province under Grant ts20190936, and the Shandong University of Science and Technology Research Fund under Grant 2015TDJH102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-cong Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lou, Zh., Fan, Jc., Ren, Yd., Tang, Ly. (2022). Feature Enhanced and Context Inference Network for Pancreas Segmentation. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1566. Springer, Singapore. https://doi.org/10.1007/978-981-19-1253-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1253-5_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1252-8

  • Online ISBN: 978-981-19-1253-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics