Skip to main content

Phonon Engineering for Quantum Hybrid Systems

  • Chapter
  • First Online:
Quantum Hybrid Electronics and Materials

Part of the book series: Quantum Science and Technology ((QST))

  • 843 Accesses

Abstract

Thermal management is essential for efficient semiconductor-based quantum systems. In this chapter, we discuss fundamental principles of heat conduction engineering via wave properties of phonons and review recent advances in this field. In phononic crystals—acoustic analogs of photonic crystals—phonons that remain coherent upon scattering on periodic boundaries can experience wave interference. In turn, the interference changes phonon dispersion relation and thus affects the thermal properties of the structure. In the past few years, researchers theoretically demonstrated that phononic crystal nanostructures could suppress or enhance heat conduction depending on the design of the structure. However, experiments could demonstrate such coherent control of thermal conductance only either at low temperatures or in superlattices with the periodicity and roughness at atomic scale. Thus, we discuss the advantages and limitations of coherent control of heat conduction, as well as possible strategies to overcome these limits in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kleckner, D., & Bouwmeester, D. (2006). Sub-kelvin optical cooling of a micromechanical resonator. Nature, 444(7115), 75–78.

    Article  ADS  Google Scholar 

  2. Chan, J., Alegre, T. P., Safavi-Naeini, A. H., Hill, J. T., Krause, A., & Göblacher, S., Aspelmeyer, M., & Painter, O. (2011). Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478(7367), 89–92.

    Google Scholar 

  3. O’Connell, A. D., Hofheinz, M., Ansmann, M., Bialczak, R. C., Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M., Wenner, J., Martinis, J. M., & Cleland, A. N. (2010). Quantum ground state and single-phonon control of a mechanical resonator. Nature, 464(7289), 697–703.

    Article  ADS  Google Scholar 

  4. Rocheleau, T., Ndukum, T., Macklin, C., Hertzberg, J. B., Clerk, A. A., & Schwab, K. C. (2009). Preparation and detection of a mechanical resonator near the ground state of motion. Nature, 463(7277), 72–75.

    Article  ADS  Google Scholar 

  5. Pennec, Y., Vasseur, J. O., Djafari-Rouhani, B., & Dobrzyński, L., & Deymier, P. A. (2010). Two-dimensional phononic crystals: Examples and applications. Surface Science Reports, 65(8), 229–291.

    Google Scholar 

  6. Anufriev, R., & Nomura, M. (2016). Reduction of thermal conductance by coherent phonon scattering in two-dimensional phononic crystals of different lattice types. Physical Review B, 93, 045410.

    Article  ADS  Google Scholar 

  7. Anufriev, R., & Nomura, M. (2015). Thermal conductance boost in phononic crystal nanostructures. Physical Review B, 91(24), 245417.

    Article  ADS  Google Scholar 

  8. Puurtinen, T. A., & Maasilta, I. J. (2016). Low-temperature coherent thermal conduction in thin phononic crystal membranes. Crystals, 6(6), 72.

    Article  Google Scholar 

  9. Puurtinen, T. A., & Maasilta, I. J. (2016). Low temperature heat capacity of phononic crystal membranes. AIP Advances, 6(12), 121902.

    Article  ADS  Google Scholar 

  10. Anufriev, R., & Nomura, M. (2017). Heat conduction engineering in pillar-based phononic crystals. Physical Review B, 95(15), 155432.

    Article  ADS  Google Scholar 

  11. Graczykowski, B., Sledzinska, M., Alzina, F., Gomis-Bresco, J., Reparaz, J. S., Wagner, M. R., & Sotomayor Torres, C. M. (2015). Phonon dispersion in hypersonic two-dimensional phononic crystal membranes. Physical Review B, 91(7), 075414.

    Article  ADS  Google Scholar 

  12. Yudistira, D., Boes, A., Graczykowski, B., Alzina, F., Yeo, L. Y., Sotomayor Torres, C. M., & Mitchell, A. (2016). Nanoscale pillar hypersonic surface phononic crystals. Physical Review B, 94(9), 094304.

    Article  ADS  Google Scholar 

  13. Nomura, M., Shiomi, J., Shiga, T., & Anufriev, R. (2018). Thermal phonon engineering by tailored nanostructures. Japanese Journal of Applied Physics, 57, 080101.

    Article  ADS  Google Scholar 

  14. Zen, N., Puurtinen, T. A., Isotalo, T. J., Chaudhuri, S., & Maasilta, I. J. (2014). Engineering thermal conductance using a two-dimensional phononic crystal. Nature Communications, 5, 3435.

    Article  ADS  Google Scholar 

  15. Maasilta, I. J., Puurtinen, T. A., Tian, Y., & Geng, Z. (2015). Phononic thermal conduction engineering for bolometers: From phononic crystals to radial casimir limit. Journal of Low Temperature Physics, 184, 211–216.

    Article  ADS  Google Scholar 

  16. Maire, J., Anufriev, R., Yanagisawa, R., Ramiere, A., Volz, S., & Nomura, M. (2017). Heat conduction tuning using the wave nature of phonons. Science Advances, 3, e1700027.

    Article  ADS  Google Scholar 

  17. Lee, J., Lee, W., Wehmeyer, G., Dhuey, S., Olynick, D. L., Cabrini, S., Dames, C., Urban, J. J., & Yang, P. (2017). Investigation of phonon coherence and backscattering using silicon nanomeshes. Nature Communications, 8, 14054.

    Article  ADS  Google Scholar 

  18. Wagner, M. R., Graczykowski, B., Reparaz, J. S., El Sachat, A., Sledzinska, M., Alzina, F., & Sotomayor Torres, C. M. (2016). Two-dimensional phononic crystals: disorder matters. Nano Letters, 16, 5661–5668.

    Article  ADS  Google Scholar 

  19. Ravichandran, J., Yadav, A. K., Cheaito, R., Rossen, P. B., Soukiassian, A., Suresha, S. J., Duda, J. C., Foley, B. M., Lee, C.-H., Zhu, Y., Lichtenberger, A. W., Moore, J. E., Muller, D. A., Schlom, D. G., Hopkins, P. E., Majumdar, A., Ramesh, R., & Zurbuchen, M. A. (2014). Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nature Materials, 13(2), 168–72.

    Article  ADS  Google Scholar 

  20. Saha, B., Koh, Y. R., Feser, J. P., Sadasivam, S., Fisher, T. S., Shakouri, A., & Sands, T. D. (2017). Phonon wave effects in the thermal transport of epitaxial tin/(al,sc)n metal/semiconductor superlattices. Journal of Applied Physics, 121(1), 015109

    Google Scholar 

  21. Hołuj, P., Euler, C., Balke, B., Kolb, U., Fiedler, G., Müller, M. M., Jaeger, T., Angel, E. C., Kratzer, P., & Jakob, G. (2015). Reduced thermal conductivity of TiNiSn/HfNiSn superlattices. Physical Review B, 92(12), 125436.

    Article  ADS  Google Scholar 

  22. Anufriev, R., Maire, J., & Nomura, M. (2021). Review of coherent phonon and heat transport control in one-dimensional phononic crystals at nanoscale. APL Materials, 9(7), 070701.

    Article  ADS  Google Scholar 

  23. Anufriev, R., & Nomura, M. (2018). Phonon and heat transport control using pillar-based phononic crystals. Science and Technology of Advanced Materials, 19(1), 863–870.

    Article  ADS  Google Scholar 

  24. Chan, J., Mayer Alegre, T. P., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Gröblacher, S., Aspelmeyer, M., & Painter, O. (2011). Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478(7367), 89–92.

    Article  ADS  Google Scholar 

  25. Kippenberg, T. J., & Vahala, K. J. (2008). Cavity optomechanics: back-action at the mesoscale. Science, 321(5893), 1172–1176.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Nomura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anufriev, R., Nomura, M. (2022). Phonon Engineering for Quantum Hybrid Systems. In: Hirayama, Y., Hirakawa, K., Yamaguchi, H. (eds) Quantum Hybrid Electronics and Materials. Quantum Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-1201-6_2

Download citation

Publish with us

Policies and ethics