Skip to main content

A Comparative Study of Security Issues and Attacks on Underwater Sensor Network

  • Conference paper
  • First Online:
Proceedings of Third International Conference on Computing, Communications, and Cyber-Security

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 421))

  • 805 Accesses

Abstract

UWSNs are susceptible due to the unprotected acoustic path, extreme underwater atmosphere, and unique characteristics. UWSNs are subject to a broad range of security risks and malicious assaults due to their open auditory channel, hostile underwater atmosphere, and inherent characteristics. So, we outline several possible assaults at several stages of a typical UWSN communication protocol stack and discuss viable defenses. This article presents an overview of UWSN attacks, difficulties, and security and privacy issues. Also shown and addressed are contemporary security research and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heidemann, J., Ye, W., Wills, J., et al. (2006). Research challenges and applications for underwater sensor networkin. In Wireless Communi-cationsand Networking Conference, 2006 (WCNC 2006) (pp. 228–235). IEEE.

    Google Scholar 

  2. Lopez, J., Roman, R., & Alcaraz, C. (2009). Analysis of security threats, requirements, technologies and standards in wireless sensor networks. In Foundations of Security Analysis and Design V (pp. 289–338). Springer.

    Google Scholar 

  3. Perrig, A., Stankovic, J., & Wagner, D. (2004). Security in wireless sensor networks. Communications of the ACM, 47(6), 53–57.

    Article  Google Scholar 

  4. Perrig, A., Szewczyk, R., Wen, V., Culler, D. E., & Tygar, J. D. (2002). SPINS: Security protocols for sensor networks. Wireless Networks, 8(5), 521–534.

    Article  Google Scholar 

  5. Verma, R., & Bharti, S. (2020). A survey of network attacks in wireless sensor networks information. Communication and Computing Technology, 50–63.

    Google Scholar 

  6. Butun, I., & Osterberg, P., & Song, H. (2019). Security of the internet of things: vulnerabilities, attacks and countermeasures. IEEE Communications Surveys & Tutorials, 1–1.

    Google Scholar 

  7. Shi, L., Liu, Q., Shao, J., & Cheng, J. (2021). Distributed localization in wireless sensor networks under denial-of-service attacks. IEEE Control Systems Letters, 5(2), 493–498.

    Google Scholar 

  8. Verma, R., Darak, S. J., Tikkiwal, V., Joshi, H., & Kumar, R. (2019) Countermeasures against jamming attack in sensor networks with timing and power constraints. In 11th International Conference on Communication Systems & Networks (COMSNETS).

    Google Scholar 

  9. Dewal, P., & Narula, G. S., Jain, V., Baliyan, A. (2018). Security attacks in wireless sensor networks: A survey.

    Google Scholar 

  10. Raoof, A., Matrawy, A., & Lung, C. (2019). Routing Attacks and Mitigation Methods for RPL-Based Internet of Things. IEEE Communications Surveys & Tutorials, 21, 1582–1606.

    Article  Google Scholar 

  11. Butun, I., Osterberg, P., & Song, H. (2009). Security of the internet of things: vulnerabilities, attacks and countermeasures. IEEE Communications Surveys & Tutorials, 1–1

    Google Scholar 

  12. Xie, H., Yan, Z., Yao, Z., & Atiquzzaman, M. (2019). Data collection for security measurement in wireless sensor networks: a survey. IEEE Internet of Things Journal, 6(2), 2205–2224.

    Article  Google Scholar 

  13. Butun, I., Osterberg, P., & Song, H. (2019). Security of the internet of things: vulnerabilities, attacks and countermeasures. IEEE Communications Surveys & Tutorials 1–1.

    Google Scholar 

  14. Riaz, M. N., Buriro, A., & Mahboob, A, (2018) Classification of attacks on wireless sensor networks: a survey. International Journal of Wireless and Microwave Technologies (IJWMT), 8(6), 15–39.

    Google Scholar 

  15. Jadhav, R., & Vatsala, V. (2017). Security issues and solutions in wireless sensor networks. International Journal of Computer Applications, 14–19.

    Google Scholar 

  16. Sinha, P., Jha, V. K., Rai, A. K., & Bhushan, B. (2017). Security vulnerabilities, attacks and countermeasures in wireless sensor networks at various layers of OSI reference model: A survey. In International Conference on Signal Processing and Communication (ICSPC).

    Google Scholar 

  17. Verma, R., & Bharti, S. (2020) A survey of network attacks in wireless sensor networks information. Communication and Computing Technology, 50–63.

    Google Scholar 

  18. Rajendran, G. B., Kumarasamy, U. M., Zarro, C., Divakarachari, P. B., & Ullo, S. L. (2020). Land-use and land-cover classification using a human group-based particle swarm optimization algorithm with an LSTM Classifier on hybrid pre-processing remote-sensing images. Remote Sensing, 12(24), 4135.

    Article  Google Scholar 

  19. Sharma, M.K., & Joshi, B. K. (2017). Detection & prevention of vampire attack in wireless sensor networks. In International Conference on Information, Communication, Instrumentation and Control (ICICIC) (pp. 1–5)

    Google Scholar 

  20. Vu, D. L., Nguyen, T. K., Nguyen, T. V., Nguyen, T.N., Massacci, F., & Phung, P. H. (2019). A convolutional transformation network for malware classification. In 2019 6th NAFOSTED conference on information and computer science (NICS) (pp. 234–239). IEEE

    Google Scholar 

  21. Do, D. T., Le, T. A., Nguyen, T.N. Li, X., & Rabie, K. M. (2020). Joint impacts of imperfect CSI and imperfect SIC in cognitive radio-assisted NOMA-V2X communications. IEEE Access, 8 (pp. 128629–128645).

    Google Scholar 

  22. Zhen, L., Bashir, A. K., Yu, K., Al-Otaibi, Y. D., Foh, C. H., & Xiao, P. (2020) Energy-efficient random access for leo satellite-assisted 6G internet of remote things. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2020.3030856

  23. Verma, R., & Bharti, S.: A survey of network attacks in wireless sensor networks information, communication and computing technology (pp. 50–63).

    Google Scholar 

  24. Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad hoc networks, 3(3), 257–279.

    Article  Google Scholar 

  25. Cui, J. H., Kong, J., Gerla, M., et al. (2005). Challenges: building scalable and distributed underwater wireless sensor networks (UWSNs) for aquatic applications. Channels, 45(4), 22–35.

    Google Scholar 

  26. Ganeriwal, S., Capkun, S., Han, C.- C., Srivastava, M. B. (2005). Secure time synchronization service for sensor networks. In Proceedings of the 4th ACM Workshop on Wireless Security (pp. 97–106). ACM Press.

    Google Scholar 

  27. Boukerche, A., & Turgut, D. (2007). Secure time synchronization protocols for wireless sensor networks. IEEE Wireless Communications, 14(5).

    Google Scholar 

  28. Goyal, N., Dave, M., & Verma, A.K. (2017). Trust model for cluster head validation in underwater wireless sensor networks. Underwater Technology, 34(3).

    Google Scholar 

  29. Chen, K., Zhou, Y., & He, J. (2009). A localization scheme for underwater wireless sensor networks. International Journal of Advanced Science and Technology, 4.

    Google Scholar 

  30. Liu, J., Wang, Z., Zuba, M., et al. (2014). DA-Sync: A Doppler-assisted time-synchronization scheme for mobile underwater sensor networks. IEEE Transactions on Mobile Computing, 13(3), 582–595.

    Article  Google Scholar 

  31. Liu, J., Wang, Z., Peng, Z., et al. (2011). TSMU: a time synchronization scheme for mobile underwater sensor networks. In Global Telecommunications Conference (GLOBECOM 2011) (pp. 1–6). IEEE.

    Google Scholar 

  32. Song, H., Zhu, S., & Cao, G. (2007). Attack-resilient time synchronization for wireless sensor networks. Ad Hoc Networks, 5(1), 112–125.

    Article  Google Scholar 

  33. Du, X., Guizani, M., Xiao, Y., et al. (2008). Secure and efficient time synchronization in heterogeneous sensor networks. IEEE Trans. Vehicular Technol, 57(4), 2387–2394.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karan Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumari, S., Singh, K.K., Nand, P., Mishra, G.S., Astya, R. (2023). A Comparative Study of Security Issues and Attacks on Underwater Sensor Network. In: Singh, P.K., Wierzchoń, S.T., Tanwar, S., Rodrigues, J.J.P.C., Ganzha, M. (eds) Proceedings of Third International Conference on Computing, Communications, and Cyber-Security. Lecture Notes in Networks and Systems, vol 421. Springer, Singapore. https://doi.org/10.1007/978-981-19-1142-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1142-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1141-5

  • Online ISBN: 978-981-19-1142-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics