Skip to main content

SPECIAL SESSION ON RECENT ADVANCES IN COMPUTATIONAL INTELLIGENCE & TECHNOLOGYS (SS_10_RACIT)

Development of Generic Human Motion Simulation Categorization using Inception based CNN

  • Conference paper
  • First Online:
Proceedings of Third International Conference on Computing, Communications, and Cyber-Security

Abstract

Generic human motion is the steps taken by the person for everyday movement. In this paper, the generic framework has been proposed for gait activity recognition using the inception-based convolutional neural network (CNN) model. The gait pattern is a compound of seven sub-phases. However, sequential execution of these seven sub-phases of left and right legs is called gait cycle. Gait features are used to perform the biometric, biomechanics, and human psychology analysis of human beings. Human walking is very challenging to measure due to high variability. It depends on age, gender, walking terrain, walking speed, mental condition, health condition, etc. The analysis of human gait helps identify human activities, diagnose many gait-related diseases like Parkinson’s and freezing of gait. Due to variability of gait, biometric is difficult to spool. This paper covers to analyzing the existing available wireless sensor data mining (WISDM) dataset and our gait dataset of human activity (GDOHA) dataset and evaluating the performance. Moreover, we compare performance metrics on datasets applying machine learning and deep learning algorithms. The result achieved 99.03% accuracy using the inception-based CNN model. The proposed computational model helps to early detection of gait abnormality and provides the proper mechanism for recovery from abnormal gait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voicu, R. A., Dobre, C., Bajenaru, L., & Ciobanu, R. I. (2019). Human physical activity recognition using smartphone sensors. Sensors, 19(3), 458.

    Article  Google Scholar 

  2. Mo, L., Li, F., Zhu, Y., & Huang, A. (2016). Human physical activity recognition based on computer vision with deep learning model. In 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings (pp. 1–6). IEEE.

    Google Scholar 

  3. Zainudin, M. S., Sulaiman, M. N., Mustapha, N., & Perumal, T. (2015). Activity recognition based on accelerometer sensor using combinational classifiers. In 2015 IEEE Conference on Open Systems (ICOS) (pp. 68–73). IEEE.

    Google Scholar 

  4. Hou, C. (2020). A study on IMU-based human activity recognition using deep learning and traditional machine learning. In 2020 5th International Conference on Computer and Communication Systems (ICCCS) (pp. 225–234). IEEE.

    Google Scholar 

  5. Sunny, J. T., George, S. M., Kizhakkethottam, J. J., Sunny, J. T., George, S. M., & Kizhakkethottam, J. J. (2015). Applications and challenges of human activity recognition using sensors in a smart environment. IJIRST International Journal of Innovative Science and Research Technology, 2, 50–57.

    Google Scholar 

  6. Lee, H., Ahn, C. R., Choi, N., Kim, T., & Lee, H. (2019). The effects of housing environments on the performance of activity-recognition systems using Wi-Fi channel state information: An exploratory study. Sensors, 19(5), 983.

    Article  Google Scholar 

  7. di Biase, L., Di Santo, A., Caminiti, M. L., De Liso, A., Shah, S. A., Ricci, L., & Di Lazzaro, V. (2020). Gait analysis in Parkinson’s disease: An overview of the most accurate markers for diagnosis and symptoms monitoring. Sensors, 20(12), 3529.

    Google Scholar 

  8. Luo, J., & Tjahjadi, T. (2020). Multi-set canonical correlation analysis for 3D abnormal gait behaviour recognition based on virtual sample generation. IEEE Access, 8, 32485–32501.

    Article  Google Scholar 

  9. Ranasinghe, S., Al Machot, F., & Mayr, H. C. (2016). A review on applications of activity recognition systems with regard to performance and evaluation. International Journal of Distributed Sensor Networks, 12(8), 1550147716665520.

    Article  Google Scholar 

  10. Hussain, Z., Sheng, M., & Zhang, W. E. (2019). Different approaches for human activity recognition: A survey. arXiv preprint arXiv:1906.05074

  11. Iqbal, S., Zang, X., Zhu, Y., Saad, H. M. A. A., & Zhao, J. (2015). Nonlinear time-series analysis of different human walking gaits. In 2015 IEEE International Conference on Electro/Information Technology (EIT) (pp. 025–030). IEEE.

    Google Scholar 

  12. Semwal, V. B. (2017). Data driven computational model for bipedal walking and push recovery (In Thesis).

    Google Scholar 

  13. Iqbal, S., Zang, X., Zhu, Y., Saad, H. M. A. A., & Zhao, J. (2015). Nonlinear time- series analysis of different human walking gaits. In 2015 IEEE International Conference on Electro/Information Technology (EIT) (pp. 025–030). IEEE.

    Google Scholar 

  14. Chadza, T., Kyriakopoulos, K. G., & Lambotharan, S. (2019). Contemporary sequential network attacks prediction using hidden Markov model. In 2019 17th International Conference on Privacy, Security and Trust (PST) (pp. 1–3). IEEE.

    Google Scholar 

  15. Roy, S. K., Krishna, G., Dubey, S. R., & Chaudhuri, B. B. (2019). HybridSN: Exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 17(2), 277–281.

    Article  Google Scholar 

  16. Hu, C. H., Pei, H., Si, X. S., Du, D. B., Pang, Z. N., & Wang, X. (2019). A prognostic model based on DBN and diffusion process for degrading bearing. IEEE Transactions on Industrial Electronics, 67(10), 8767–8777.

    Google Scholar 

  17. Vrigkas, M., Nikou, C., & Kakadiaris, I. A. (2015). A review of human activity recognition methods. Frontiers in Robotics and AI, 2, 28.

    Article  Google Scholar 

  18. Kwapisz, J. R., Weiss, G. M., & Moore, S. A. (2011). Activity recognition using cell phone accelerometers. ACM SigKDD Explorations Newsletter, 12(2), 74–82.

    Article  Google Scholar 

  19. Nixon, M. S., & Carter, J. N. (2006). Automatic recognition by gait. Proceedings of the IEEE, 94(11), 2013–2024.

    Article  Google Scholar 

  20. Boulgouris, N. V., Plataniotis, K. N., & Hatzinakos, D. (2006). Gait recognition using linear time normalization. Pattern Recognition, 39(5), 969–979.

    Article  Google Scholar 

  21. Tao, D., Li, X., Wu, X., & Maybank, S. J. (2007). General tensor discriminant analysis and Gabor features for gait recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(10), 1700–1715.

    Article  Google Scholar 

  22. Arai, K., & Andrie, R. (2012). Gait recognition method based on wavelet transformation and its evaluation with Chinese Academy of Sciences (CASIA) gait database as a human gait recognition dataset. In 2012 Ninth International Conference on Information Technology-New Generations (pp. 656–661). IEEE.

    Google Scholar 

  23. Cheng, J., Amft, O., Bahle, G., & Lukowicz, P. (2013). Designing sensitive wearable capacitive sensors for activity recognition. IEEE Sensors Journal, 13(10), 3935–3947.

    Article  Google Scholar 

  24. Ronao, C. A., & Cho, S. B. (2016). Human activity recognition with smartphone sensors using deep learning neural networks. Expert Systems with Applications, 59, 235–244.

    Article  Google Scholar 

  25. Zhou, B., Yang, J., & Li, Q. (2019). Smartphone-based activity recognition for indoor localization using a convolutional neural network. Sensors, 19(3), 621.

    Article  Google Scholar 

  26. Khare, S., Sarkar, S., & Totaro, M. (2020). Comparison of sensor-based datasets for human activity recognition in wearable IoT. In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT) (pp. 1–6). IEEE.

    Google Scholar 

  27. Cheng, X., Chai, D., He, J., Zhang, X., & Duan, S. (2019). In-noHAR: A deep neural network for complex human activity recognition. IEEE Access, 7, 9893–9902.

    Article  Google Scholar 

  28. Attal, F., Mohammed, S., Dedabrishvili, M., Cham-roukhi, F., Oukhellou, L., & Amirat, Y. (2015). Physical human activity recognition using wearable sensors.

    Google Scholar 

  29. Lee, S.-M., Yoon, S. M., & Cho, H. (2017). Human activity recognition from accelerometer data using convolutional neural network. In 2017 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 131–134). IEEE.

    Google Scholar 

  30. Lawal, I. A., & Bano, S. (2019). Deep human activity recognition using wearable sensors. In Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments—PETRA ’19 (pp. 45–48). ACM Press

    Google Scholar 

  31. Bayat, A., Pomplun, M., & Tran, D. A. (2014). A study on human activity recognition using accelerometer data from smartphones. ProcediaComputerScience, 34, 450–457.

    Google Scholar 

  32. Bao, L., & Intille, S. S. (2004). Activity recognition from user-annotated acceleration data. In International Conference on Pervasive Computing (pp. 1–17). Springer.

    Google Scholar 

  33. Pienaar, S. W., & Malekian, R. (2019). Human activity recognition using LSTM-RNN deep neural network architecture. In 2019 IEEE 2nd Wireless Africa Conference (WAC) (pp. 1–5). IEEE.

    Google Scholar 

  34. Ordóñez, F. J., & Roggen, D. (2016). Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors, 16(1), 115.

    Article  Google Scholar 

Download references

Funding

This work is supported by SERB, DST of government of India under Early Career Award with DST NO: ECR/2018/000203 ECR dated June 04, 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kumar Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yadav, R.K., Neogi, S.G., Semwal, V.B. (2023). SPECIAL SESSION ON RECENT ADVANCES IN COMPUTATIONAL INTELLIGENCE & TECHNOLOGYS (SS_10_RACIT). In: Singh, P.K., Wierzchoń, S.T., Tanwar, S., Rodrigues, J.J.P.C., Ganzha, M. (eds) Proceedings of Third International Conference on Computing, Communications, and Cyber-Security. Lecture Notes in Networks and Systems, vol 421. Springer, Singapore. https://doi.org/10.1007/978-981-19-1142-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1142-2_47

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1141-5

  • Online ISBN: 978-981-19-1142-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics