Skip to main content

Unravel the Outlier Detection for Indian Ayurvedic Plant Organ Image Dataset

  • Conference paper
  • First Online:
Proceedings of Third International Conference on Computing, Communications, and Cyber-Security

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 421))

  • 776 Accesses

Abstract

Image-based outlier detection has been a fundamental research problem for machine learning and computer vision researchers. This paper unravels the outlier detection process for the data preparation framework of the Indian Ayurvedic plant organ image dataset. While creating dataset the outlier images might get introduce due to human or device errors. Identification and rectification of such outlier images are crucial part for creating clean dataset. This paper evaluated and compared four well-known and state-of-the-art outlier detection algorithms, namely Isolation Forest, Local Outlier Factor, Histogram-Based Outlier Score, and One-Class Support Vector Machine for detecting the outliers from the dataset of Indian Ayurvedic plant organ images. For this experiment dataset containing 690 images of “Centella asiatica” was used and augmented to generate more image samples. In total, 21 morphological, geometric, color, and texture features have been extracted from each plant organ image. The experiment shows the isolation forest giving superior results with 91% accuracy, at the same time Histogram-Based Outlier Score proves to be the fastest in execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boukerche, A., Zheng, L., & Alfandi, O. (2020). Outlier detection: Methods, models, and classification. ACM Computing Surveys, 53 (3) (2020). https://doi.org/10.1145/3381028

  2. Navarro-Esteban, P., & Cuesta-Albertos, J. A. (2021). High-dimensional outlier detection using random projections. TEST. https://doi.org/10.1007/s11749-020-00750-y

    Article  MathSciNet  MATH  Google Scholar 

  3. Eskin, E. (2008). Anomaly detection over noisy data using learned probability distributions. In Proceedings of the Seventeenth International Conference on Machine Learning (pp. 255–262).

    Google Scholar 

  4. Tang, B., & He, H. (2017). A local density-based approach for outlier detection. Neurocomputing, 241, 171–180. https://doi.org/10.1016/j.neucom.2017.02.039

    Article  Google Scholar 

  5. Ma, M. X., Ngan, H. Y., & Liu, W. (2016). Density-based outlier detection by local outlier factor on largescale traffic data. Electronic Imaging, 14, 1–4. https://doi.org/10.2352/issn.2470-1173.2016.14.ipmva-385

    Article  Google Scholar 

  6. Christy, A., Gandhi, G. M., & Vaithyasubramanian, S. (2015). Cluster based outlier detection algorithm for healthcare data. Procedia Computer Science, 50, 209–215. https://doi.org/10.1016/j.procs.2015.04.058

    Article  Google Scholar 

  7. Liu, B., Xiao, Y., Cao, L., Hao, Z., & Deng, F. (2012). SVDD-based outlier detection on uncertain data. Knowledge and Information Systems, 34(3), 597–618. https://doi.org/10.1007/s10115-012-0484-y

    Article  Google Scholar 

  8. Kansara, M., & Parikh, A. (2020). Indian Ayurvedic plant identification using multi-organ image analytics: Creation of image dataset of Indian medicinal plant organs. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3563074

    Article  Google Scholar 

  9. Li, S., Zhang, K., Duan, P., & Kang, X. (2020). Hyperspectral Anomaly detection with kernel isolation forest. IEEE Transactions on Geoscience and Remote Sensing, 58(1), 319–329. https://doi.org/10.1109/tgrs.2019.2936308

    Article  Google Scholar 

  10. Cheng, Z., Zou, C., & Dong, J. (2019). Outlier detection using isolation forest and local outlier factor. In Proceedings of the Conference on Research in Adaptive and Convergent Systems (2019). https://doi.org/10.1145/3338840.3355641

  11. Kriegel, H. P., Kröger, P., Schubert, E., & Zimek, A. (2009). LoOP. In Proceeding of the 18th ACM Conference on Information and Knowledge Management—CIKM’09. https://doi.org/10.1145/1645953.1646195

  12. Zhang, K., Hutter, M., & Jin, H. (2009). A new local distance-based outlier detection approach for scattered real-world data. In Advances in knowledge discovery and data mining (pp. 813–822). https://doi.org/10.1007/978-3-642-01307-2_84

  13. Hendrycks, D., Mazeika, M., & Dietterich, T. G. (2019). Deep anomaly detection with outlier exposure. Opgehaal van. CoRR, abs/1812.04606. http://arxiv.org/abs/1812.04606

  14. Goldstein, M., & Uchida, S. (2016). A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS ONE, 11(4), e0152173. https://doi.org/10.1371/journal.pone.0152173

    Article  Google Scholar 

  15. Sehwag, V., Chiang, M., & Mittal, P. (2021). SSD: A unified framework for self-supervised outlier detection. Opgehaal van. CoRR, abs/2103.12051. https://arxiv.org/abs/2103.12051

  16. Elmogy, A., Rizk, H., & Sarhan, A. M. (2020). OFCOD: On the fly clustering based outlier detection framework. Data, 6(1), 1. https://doi.org/10.3390/data6010001

    Article  Google Scholar 

  17. Chen, Z., Yeo, C. K., Lee, B. S., Lau, C. T., & Jin, Y. (2018). Evolutionary multi-objective optimization based ensemble autoencoders for image outlier detection. Neurocomputing, 309, 192–200. https://doi.org/10.1016/j.neucom.2018.05.012

    Article  Google Scholar 

  18. Shahid, N., Naqvi, I. H., & Qaisar, S. B. (2013). One-class support vector machines: Analysis of outlier detection for wireless sensor networks in harsh environments. Artificial Intelligence Review, 43(4), 515–563 (2013). https://doi.org/10.1007/s10462-013-9395-x

  19. Cao, L., Yan, Y., Madden, S., & Rundensteiner, E. (2019). Outlier detection from image data. Opgehaal van. https://openreview.net/forum?id=HygTE309t7

  20. Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008). Isolation forest. In 2008 Eighth IEEE International Conference on Data Mining. https://doi.org/10.1109/icdm.2008.17

  21. Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000). LOF. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data—SIGMOD. https://doi.org/10.1145/342009.335388

  22. Goldstein, M., & Dengel, A. (2012). Histogram-based outlier score (HBOS): A fast unsupervised anomaly detection algorithm. In Poster and Demo Track of the 35th German Conference on Artificial Intelligence (KI-2012) (pp. 59–63).

    Google Scholar 

  23. Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13(7), 1443–1471. https://doi.org/10.1162/089976601750264965

    Article  MATH  Google Scholar 

  24. Wäldchen, J., & Mäder, P. (2018). Plant species identification using computer vision techniques: A systematic literature review. Archives of Computational Methods in Engineering. State of the Art Reviews, 25(2), 507–543.

    Google Scholar 

Download references

Acknowledgements

Authors extend their sincere thanks to Dr. Minubhai Purabia, retired Professor Department of Botany, South Gujarat University, for his continuous support and providing domain knowledge. We are thankful to Late Dr. Haresh L. Dhaduk from Anand Agriculture University for facilitating researchers with sample collection and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meera Kansara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kansara, M., Parikh, A. (2023). Unravel the Outlier Detection for Indian Ayurvedic Plant Organ Image Dataset. In: Singh, P.K., Wierzchoń, S.T., Tanwar, S., Rodrigues, J.J.P.C., Ganzha, M. (eds) Proceedings of Third International Conference on Computing, Communications, and Cyber-Security. Lecture Notes in Networks and Systems, vol 421. Springer, Singapore. https://doi.org/10.1007/978-981-19-1142-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1142-2_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1141-5

  • Online ISBN: 978-981-19-1142-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics