Skip to main content

A Comparative Analysis of Edge Detection Using Soft Computing Techniques

  • Conference paper
  • First Online:
Proceedings of Third International Conference on Computing, Communications, and Cyber-Security

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 421))

Abstract

Detecting edges is one of the most significant aspects of computer vision. Typical methods for edge detection like Sobel and Canny are robust and fast, but they are sensitive to noise. Soft computing techniques such as particle swarm optimization (PSO), ant colony optimization (ACO), genetic algorithms (GA) and fuzzy logic system (FLS) have extensive application in edge detection of images because of their adaptive behavior. Edge detection is identifying the discontinuities in intensity of the pixel and grouping the contour of edges. The quality of edges in ACO-based edge detection majorly depends on the choice of constants, pheromone evaporation rate, number of iterations etc. In PSO-based edge detection, the quality of images depends on the values of acceleration coefficients and inertia weight. However, thresholding is major stakeholder in determining the fitness of the chromosomes. The population contains 2-D chromosomes. Fuzzy systems are most suitable for designing edge detection hardware. This paper presents a thorough comparative study of soft-computing-based edge detection techniques and highlights their key features. The factors affecting quality of edges are compared, and the actual outcomes of the approaches are systematically arranged for better understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gonzalez, R. C., &Woods, R. E. (2007). Digital image processing. Prentice Hall.

    Google Scholar 

  2. Umbaugh, S. E. (2005). Computer imaging: digital image analysis and processing. CRC Press.

    Google Scholar 

  3. Lim, D. H. (2006). Robust edge detection in noisy images. Computational Statistics and Data Analysis, 50(3), 803–812.

    Article  MathSciNet  Google Scholar 

  4. Chidiac, H., & Ziou, D. (1999). Classification of image edges. In Proceedings of the Conference on Vision Interface, Canada, pp. 17–24.

    Google Scholar 

  5. Poggio, T., & Torre, V. (1984). Ill-Posed Problems and Regularization Analysis in Early Vision. Artificial Intelligence Lab. Memo, No. 773, Massachusetts Institut of Technology.

    Google Scholar 

  6. Poggio, T., & Torre, V. (1985). A Regularized Solution to Edge Detection. Artificial Intelligence Lab. Memo, No. 833, Massachusetts Institut of Technology.

    Google Scholar 

  7. Heath, M., Sarkar, S., Sanocki, T., & Bowyer, K. (1998). Comparison of edge detectors: A methodology and initial study. Computer Vision and Image Understanding, 69(1), 38–54.

    Article  Google Scholar 

  8. Clavier, E., Clavier, S., Labiche, J.: Image sorting—image classification: A global approach. In ICDAR ’99: Proceedings of the Fifth International Conference on Document Analysis and Recognition. Washington, DC, USA (pp. 123–129). IEEE Computer Society.

    Google Scholar 

  9. Canny, J. (1983). Finding edges and lines in images. Technical Report, Massachusetts Institute of Technology, Cambridge, MA, USA.

    Google Scholar 

  10. Roushdy, M. (2007). Comparative study of edge detection algorithms applying on the grayscale noisy image using morphological filter. ICGST International Journal on Graphics, Vision and Image Processing, 6, 17–23.

    Google Scholar 

  11. Sharifi, M., Fathy, M., & Mahmoudi, M. T. (2002). A classified and comparative study of edge detection algorithms. In Proceedings of the International Conference on Information Technology: Coding and Computing (pp. 117–120).

    Google Scholar 

  12. Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London Series B, 207, 187–217.

    Google Scholar 

  13. Shen, J., & Castan, S. (1993). Towards the unification of band-limited derivative operators for edge detection. Signal Processing, 31(2), 103–119.

    Article  Google Scholar 

  14. Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406) (Vol. 2, pp. 1470–1477). https://doi.org/10.1109/CEC.1999.782657

  15. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-International Conference on Neural Networks (Vol. 4). IEEE.

    Google Scholar 

  16. Bhandarkar, S. M., Zhang, Y., & Potter, W. D. (1994). An edge detection technique using genetic algorithm-based optimization. Pattern Recognition, 27(9), 1159–1180.

    Article  Google Scholar 

  17. Zadeh, L. A. (1996). Fuzzy sets. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh (pp. 394–432).

    Google Scholar 

  18. Zhuang, X. (2004). Edge feature extraction in digital images with the ant colony system. In 2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications (CIMSA, 2004) (pp. 133–136). https://doi.org/10.1109/CIMSA.2004.1397248

  19. Ari, S., Ghosh, D., & Mohanty, P. (2014). Edge detection using ACO and F ratio. Signal, Image and Video Processing, 8. https://doi.org/10.1007/s11760-013-0569-4

  20. Liu, X., & Fang, S. (2015). A convenient and robust edge detection method based on ant colony optimization. Optics Communications, 353, 147–157.

    Article  Google Scholar 

  21. Raheja, S., & Kumar, A. (2020). Edge Detection using ant colony optimization under novel intensity mapping function and weighted adaptive threshold. International Journal of Integrated Engineering, 12(1), 13–26. Retrieved from https://publisher.uthm.edu.my/ojs/index.php/ijie/article/view/3278

  22. Kumar, A., & Raheja, S. (2020). Edge detection using guided image filtering and enhanced ant colony optimization. Procedia Computer Science, 173, 8–17. https://doi.org/10.1016/j.procs.2020.06.003

    Article  Google Scholar 

  23. Reynolds, C. W. (1987). Flocks, herds and schools: a distributed behavioral model. Computer Graphics, 2(4), 25–34.

    Google Scholar 

  24. Heppner, F., & Grenander, U. (1990). A stochastic nonlinear model for coordinated bird flocks. In S . Krasner (Ed.), The ubiquity of chaos. AAAS Publications.

    Google Scholar 

  25. Chen, Y., et al. (2004). A local linear wavelet neural network. In: Proceedings of 5th world Congress on Intelligent Control and Automation, China (pp. 15–19).

    Google Scholar 

  26. Alipoor, M., Imandoost, S., & Haddadnia, J. (2010) Designing edge detection filters using particle swarm optimization. In 2010 18th Iranian Conference on Electrical Engineering (pp. 548–552). https://doi.org/10.1109/IRANIANCEE.2010.5507008

  27. Setayesh, M., Zhang, M., & Johnston, M. (2010). Improving edge detection using particle swarm optimization. In 2010 25th International Conference of Image and Vision Computing, New Zealand (pp. 1–8). https://doi.org/10.1109/IVCNZ.2010.6148810

  28. Setayesh, M., Zhang, M., & Johnston, M. (2009). A new homogeneity-based approach to edge detection using PSO. In Proceedings of the 24th International Conference on Image and Vision Computing, New Zealand (pp. 231–236). IEEE Press.

    Google Scholar 

  29. Setayesh, M., Zhang, M., & Johnston, M. (2011). Edge detection using constrained discrete particle swarm optimisation in noisy images. IEEE Congress of Evolutionary Computation (CEC), 2011, 246–253. https://doi.org/10.1109/CEC.2011.5949625

    Article  Google Scholar 

  30. Dahiya, P., & Singh, N. (2019). Edge detection technique using binary particle swarm optimization. Procedia Computer Science, 167. https://doi.org/10.1016/j.procs.2020.03.353

  31. Fu, W., Johnston, M., & Zhang, M. (2012). Soft edge maps from edge detectors evolved by genetic programming. IEEE Congress on Evolutionary Computation, 2012, 1–8. https://doi.org/10.1109/CEC.2012.6256105

    Article  Google Scholar 

  32. Fu, W., Johnston, M., & Zhang, M. (2014). Low-level feature extraction for edge detection using genetic programming. IEEE Transactions on Cybernetics, 44(8), 1459–1472. https://doi.org/10.1109/TCYB.2013.2286611

    Article  Google Scholar 

  33. ElAraby, W. S., Madian, A. H., Ashour, M. A., Farag, I., & Nassef, M. (2017). Fractional edge detection based on genetic algorithm. In: 2017 29th International Conference on Microelectronics (ICM) (pp. 1–4). https://doi.org/10.1109/ICM.2017.8268860

  34. Liang, Q., & Mendel, J. (2000). Interval type-2 fuzzy logic systems: Theory and design. IEEETrans. Fuzzy Syst., 8, 535–550.

    Article  Google Scholar 

  35. Mendel, J. (2001). Uncertain rule-based fuzzy logic systems: Introduction and new directions. Prentice-Hall.

    Google Scholar 

  36. Gonzalez, C. I., et al. (2016). Optimization of interval type-2 fuzzy systems for image edge detection. Applied Soft Computing, 47, 631–643 (2016).

    Google Scholar 

  37. Bias, S., Reni, S., & Kale, P. (2018). mobile hardware based implementation of a novel, efficient, fuzzy logic inspired edge detection technique for analysis of malaria infected microscopic thin blood images. Procedia Computer Science, 141, 374–381. https://doi.org/10.1016/j.procs.2018.10.187

    Article  Google Scholar 

  38. Raheja, S., & Kumar, A. (2021). Edge detection based on type-1 fuzzy logic and guided smoothening. Evolving Systems, 12(2), 447–462.

    Article  Google Scholar 

  39. Bozorgmehr, A., et al. (2020). A novel digital fuzzy system for image edge detection based on wrap-gate carbon nanotube transistors. Computers & Electrical Engineering, 87, 106811 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankush Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verma, A., Dhanda, N., Yadav, V. (2023). A Comparative Analysis of Edge Detection Using Soft Computing Techniques. In: Singh, P.K., Wierzchoń, S.T., Tanwar, S., Rodrigues, J.J.P.C., Ganzha, M. (eds) Proceedings of Third International Conference on Computing, Communications, and Cyber-Security. Lecture Notes in Networks and Systems, vol 421. Springer, Singapore. https://doi.org/10.1007/978-981-19-1142-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1142-2_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1141-5

  • Online ISBN: 978-981-19-1142-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics