Skip to main content

Cognitive Techniques for Brain Disorder Management: A Future Trend

  • Chapter
  • First Online:
Augmented Intelligence in Healthcare: A Pragmatic and Integrated Analysis

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1024))

  • 404 Accesses

Abstract

Biomedical signal analysis has a great demand for effective clinical and hospital services. Emerging techniques need to be developed and applied for diagnosis and treatment of the patients. Simultaneously it will be the better support to the physicians. In current trend, processing is likely to be digital. Physiological signals like ECG, EMG, EEG, and imaging like CT, MRI are to be well analyzed for better accuracy, detection, and diagnosis. The research related to biosignals increases exponentially. Electroencephalograph (EEG) is one of these signals and has a vital role in the study of brain activity, as well as different brain-related diseases, disorders, and treatments in the field of medicine. This chapter aims to application of machine learning techniques for electroencephalogram (EEG) analysis as varieties of brain disorders are diagnosed by visual inspection of EEG signals. Initial phase provides the basics of EEG, acquisition, and necessity of analysis. Next to it, different techniques used earlier including computational intelligence are provided. Further, use of deep neural networks as an emerging intelligent technique is provided for different modes of EEG analysis by researchers. Finally, an example of classification is depicted with the future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rangayyan, R. M. (2015). Biomedical signal analysis (Vol. 33). Wiley.

    Google Scholar 

  2. Cohen, A. (2019). Biomedical signal processing: Volume 2: Compression and Automatic Recognition. CRC Press.

    Google Scholar 

  3. Tripathy, H. K., Mishra, S., Thakkar, H. K., & Rai, D. (2021). CARE: A collision-aware mobile robot navigation in grid environment using improved breadth first search. Computers & Electrical Engineering, 94, 107327.

    Google Scholar 

  4. Lakshmi, M. R., Prasad, T. V., & Prakash, D. V. C. (2014). Survey on EEG signal processing methods. International Journal of Advanced Research in Computer Science and Software Engineering, 4(1).

    Google Scholar 

  5. Lal, T. N., Schroder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., & Scholkopf, B. (2004). Support vector channel selection in BCI. IEEE Transactions on Biomedical Engineering, 51(6), 1003–1010.

    Article  Google Scholar 

  6. Muller, K. R., Anderson, C. W., & Birch, G. E. (2003). Linear and nonlinear methods for brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 165–169.

    Article  Google Scholar 

  7. Mishra, S., Mishra, B. K., & Tripathy, H. K. (2015, December). A neuro-genetic model to predict hepatitis disease risk. In 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) (pp. 1–3). IEEE.

    Google Scholar 

  8. Wolpaw, J. R., McFarland, D. J., & Vaughan, T. M. (2000). Brain-computer interface research at the Wadsworth Center. IEEE Transactions on Rehabilitation Engineering, 8(2), 222–226.

    Article  Google Scholar 

  9. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., & Arnaldi, B. (2007). A review of classification algorithms for EEG-based brain–computer interfaces. Journal of neural engineering, 4(2), R1.

    Article  Google Scholar 

  10. Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and clinical Neurophysiology, 70(6), 510–523.

    Article  Google Scholar 

  11. Ko, L. W., Tsai, I. L., Yang, F. S., Chung, J. F., Lu, S. W., Jung, T. P., & Lin, C. T. (2008, November). Real-time embedded EEG-based brain-computer interface. In International Conference on Neural Information Processing (pp. 1038–1045). Springer.

    Google Scholar 

  12. Mishra, S., Thakkar, H., Mallick, P. K., Tiwari, P., & Alamri, A. (2021). A Sustainable IoHT based computationally intelligent healthcare monitoring system for lung cancer risk detection. Sustainable Cities and Society, 103079.

    Google Scholar 

  13. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical neurophysiology, 113(6), 767–791.

    Article  Google Scholar 

  14. Das, R., Maiorana, E., &Campisi, P. (2017, August). Visually evoked potential for EEG biometrics using convolutional neural network. In 2017 25th European Signal Processing Conference (EUSIPCO) (pp. 951–955). IEEE.

    Google Scholar 

  15. Vaughan, T. M., Wolpaw, J. R., & Donchin, E. (1996). EEG-based communication: Prospects and problems. IEEE Transactions on Rehabilitation Engineering, 4(4), 425–430.

    Article  Google Scholar 

  16. Kingma, D. P., & Ba, J. (2014). Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.

  17. Subasi, A. (2005). Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients. Expert systems with applications, 28(4), 701–711.

    Article  Google Scholar 

  18. Singla, R., Chambayil, B., Khosla, A., & Santosh, J. (2011). Comparison of SVM and ANN for classification of eye events in EEG. Journal of Biomedical Science and Engineering, 4(01), 62.

    Article  Google Scholar 

  19. Srinivasan, V., Eswaran, C., & Sriraam, N. (2007). Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions on information Technology in Biomedicine, 11(3), 288–295.

    Article  Google Scholar 

  20. Sors, A., Bonnet, S., Mirek, S., Vercueil, L., & Payen, J. F. (2018). A convolutional neural network for sleep stage scoring from raw single-channel EEG. Biomedical Signal Processing and Control, 42, 107–114.

    Article  Google Scholar 

  21. Hsu, Y. L., Yang, Y. T., Wang, J. S., & Hsu, C. Y. (2013). Automatic sleep stage recurrent neural classifier using energy features of EEG signals. Neurocomputing, 104, 105–114.

    Article  Google Scholar 

  22. Srinivasan, V., Eswaran, C., & Sriraam, A. N. (2005). Artificial neural network based epileptic detection using time-domain and frequency-domain features. Journal of Medical Systems, 29(6), 647–660.

    Article  Google Scholar 

  23. Ozdamar, O., Yaylali, I., Jayaker, P., & Lopez, C. N. (1991, May). Multilevel neural network system for EEG spike detection. In 1991 Computer-Based Medical Systems@ m_Proceedings of the Fourth Annual IEEE Symposium (pp. 272–279). IEEE.

    Google Scholar 

  24. Guger, C., Schlogl, A., Neuper, C., Walterspacher, D., Strein, T., & Pfurtscheller, G. (2001). Rapid prototyping of an EEG-based brain-computer interface (BCI). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 9(1), 49–58.

    Article  Google Scholar 

  25. Bashivan, P., Rish, I., Yeasin, M., &Codella, N. (2015). Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448

  26. Alhagry, S., Fahmy, A. A., & El-Khoribi, R. A. (2017). Emotion recognition based on EEG using LSTM recurrent neural network. Emotion, 8(10), 355–358.

    Google Scholar 

  27. Vapnik, V. (2013). The nature of statistical learning theory. Springer Science & Business Media.

    Google Scholar 

  28. Guyon, I., & Elisseeff, A. (2003, March). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.

    Google Scholar 

  29. Huang, W. Y., Shen, X. Q., & Wu, Q. (2002, November). Classify the number of EEG current sources using support vector machines. In Proceedings. International Conference on Machine Learning and Cybernetics (Vol. 4, pp. 1793–1795). IEEE.

    Google Scholar 

  30. Garcia, G. N., Ebrahimi, T., &Vesin, J. M. (2003, March). Support vector EEG classification in the Fourier and time-frequency correlation domains. In First International IEEE EMBS Conference on Neural Engineering, 2003. Conference Proceedings (pp. 591–594). IEEE.

    Google Scholar 

  31. Behnam, M., & Pourghassem, H. (2015, November). Power complexity feature-based seizure prediction using DNN and firefly-BPNN optimization algorithm. In 2015 22nd Iranian Conference on Biomedical Engineering (ICBME) (pp. 10–15). IEEE.

    Google Scholar 

  32. Lehman, J., Risi, S., & Clune, J. (2016, June). Creative generation of 3D objects with deep learning and innovation engines. In Proceedings of the 7th International Conference on Computational Creativity.

    Google Scholar 

  33. Kim, S. S., & Kasparis, T. (1998). A modified domain deformation theory on 1-D signal classification. IEEE Signal Processing Letters, 5(5), 118–120.

    Article  Google Scholar 

  34. Phan, H., Andreotti, F., Cooray, N., Chén, O. Y., & De Vos, M. (2019). SeqSleepNet: End-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(3), 400–410.

    Article  Google Scholar 

  35. Mohanty, M. N., Routray, A., & Kabisatpathy, P. (2010). Optimisation of features using evolutionary algorithm for EEG signal classification. International Journal of Computational Vision and Robotics, 1(3), 297–310.

    Article  Google Scholar 

  36. Mishra, S., Panda, A., & Tripathy, K. H. (2018). Implementation of re-sampling technique to handle skewed data in tumor prediction. Journal of Advanced Research in Dynamical and Control Systems, 10, 526–530.

    Google Scholar 

  37. De Buyser, E., De Coninck, E., Dhoedt, B., &Simoens, P. (2016). Exploring the potential of combining smart glasses and consumer-grade EEG/EMG headsets for controlling IoT appliances in the smart home.

    Google Scholar 

  38. Haykin, S. (2010). Neural networks and learning machines. 3/E. Pearson Education India.

    Google Scholar 

  39. Hagan, M. T., Demuth, H. B., & Beale, M. (1997). Neural network design. PWS Publishing Co.

    Google Scholar 

  40. Tripathy, H. K., Mallick, P. K., & Mishra, S. (2021). Application and evaluation of classification model to detect autistic spectrum disorders in children. International Journal of Computer Applications in Technology, 65(4), 368–377.

    Article  Google Scholar 

  41. Mohapatra, S. K., & Mohanty, M. N. (2020). Big data analysis and classification of biomedical signal using Random Forest Algorithm. In New paradigm in decision science and management (pp. 217–224). Springer.

    Google Scholar 

  42. Nagi, J., Ducatelle, F., Di Caro, G. A., Cireşan, D., Meier, U., Giusti, A., & Gambardella, L. M., et al. (2011, November). Max-pooling convolutional neural networks for vision-based hand gesture recognition. In 2011 IEEE International conference on signal and image processing applications (ICSIPA) (pp. 342–347). IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihir Narayan Mohanty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohanty, M.N. (2022). Cognitive Techniques for Brain Disorder Management: A Future Trend. In: Mishra, S., Tripathy, H.K., Mallick, P., Shaalan, K. (eds) Augmented Intelligence in Healthcare: A Pragmatic and Integrated Analysis. Studies in Computational Intelligence, vol 1024. Springer, Singapore. https://doi.org/10.1007/978-981-19-1076-0_15

Download citation

Publish with us

Policies and ethics