Skip to main content

Statistical Process Control on the Circle: A Review and Some New Results

  • Chapter
  • First Online:
Directional Statistics for Innovative Applications

Abstract

Statistical process control (SPC) is an important and mature area of statistics which finds application in many diverse disciplines. Until quite recently, virtually all developments and applications were restricted to data in Euclidean spaces. In this paper, we review some SPC methodology that has been developed to deal with data lying on the unit circle. With regard to parametric methods, a review of sequential probability ratio tests and Page-type CUSUMs is provided. A Shiryaev–Roberts-type sequential procedure is also proposed. Nonparametric rank-based CUSUMs for detecting location and/or concentration changes are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Billingsley, P.: Convergence of Probability Measures, 2nd edn. John Wiley and Sons Inc., New York (1999)

    Book  Google Scholar 

  2. Csörgö, M., Horváth, L.: A note on the change-point problem for angular data. Statist. Prob. Lett. 27, 61–65 (1996)

    Article  MathSciNet  Google Scholar 

  3. Fisher, N.I. (1993). Statistical Analysis of Circular Data. Cambridge University Press, Cambridge

    Google Scholar 

  4. Ghosh, K., Jammalamadaka, S., Rao, Vasudaven, M.: Change-point problems for the von Mises distribution. J. Appl. Statist. 26, 423–434 (1999)

    Google Scholar 

  5. Gadsden, R.J., Kanji, G.K.: Sequential analysis for angular data. The Statistician 30, 119–129 (1981)

    Article  Google Scholar 

  6. Gadsden, R.J., Kanji, G.K.: Sequential analysis applied to circular data. Commun. Statist. Part C: Sequential Anal.: Des. Methods Appl. 1, 305–314 (1983)

    Article  Google Scholar 

  7. Girshick, M.A., Rubin, H.: A Bayes approach to a quality control model. Ann. Math. Statist. 23, 114–125 (1952)

    Article  MathSciNet  Google Scholar 

  8. Grabovski, I., Horváth, L.: Change-point detection in angular data. Ann. Inst. Statist. Math. 53, 552–566 (2001)

    Article  MathSciNet  Google Scholar 

  9. Hawkins, D.M.: Evaluation of average run lengths of cumulative sum charts for an arbitrary data distribution. Commun. Statist.-Simul. Comput. 21(4), 1001–1020 (1992)

    Article  Google Scholar 

  10. Hawkins, D.M.: Fitting multiple change-points to data. Comput. Statist. Data Anal. 37, 323–341 (2001)

    Article  MathSciNet  Google Scholar 

  11. Hawkins, D.M., Lombard, F.: Segmentation of circular data. J. Appl. Statist. 42, 88–97 (2015)

    Article  MathSciNet  Google Scholar 

  12. Hawkins, D.M., Lombard, F.: Cusum control for data following the von Mises distribution. J. Appl. Statist. 44, 1319–1332 (2017)

    Article  MathSciNet  Google Scholar 

  13. Hawkins, D.M., Olwell, D.H.: Cumulative Sum Charts and Charting for Quality Improvement (Statistics for Engineering and Physical Science). Springer, New York (1998)

    Book  Google Scholar 

  14. Hawkins, D.M., Qiu, P., Kang, C.W.: The changepoint model for statistical process control. J. Qual. Technol. 35, 355–366 (2003)

    Article  Google Scholar 

  15. Jammalamadaka, S.R.: A matter of direction. In: Proceedings of the Indian Academy of Sciences (Mathematical Sciences), pp. 130–144 (2019)

    Google Scholar 

  16. Karlin, S., Taylor, H.M.: A Second Course in Stochastic Processes. Academic Press, New York (1981)

    MATH  Google Scholar 

  17. Klausner, Z., Fattal, E.: An objective and automatic method for identification of pattern changes in wind direction time series. Int. J. Climatol. 31, 783–790 (2011)

    Article  Google Scholar 

  18. Lombard, F.: The change—point problem for angular data: a nonparametric approach. Technometrics 28, 391–397 (1986)

    Article  Google Scholar 

  19. Lombard, F., Maxwell, R.: A cusum procedure to detect deviations from uniformity in angular data. J. Appl. Statist. 39, 1871–1880 (2012)

    Article  MathSciNet  Google Scholar 

  20. Lombard, F., Hawkins, D.M., Potgieter, C.J.: Sequential rank CUSUM charts for angular data. Comput. Statist. Data Anal. 105, 268–279 (2017)

    Article  MathSciNet  Google Scholar 

  21. Lombard, F., Hawkins, D.M., Potgieter, C.J.: CUSUM charts for angular data with applications in health science and astrophysics. REVSTAT-Statist. J. 18, 461–481 (2020)

    MATH  Google Scholar 

  22. Mardia, K.V.: Statistics of Directional Data (Probability and Mathematical Statistics). Academic Press, London (1972)

    MATH  Google Scholar 

  23. Page, E.S.: Continuous inspection schemes. Biometrika 41, 100–115 (1954)

    Article  MathSciNet  Google Scholar 

  24. Pollak, M., Siegmund, D.: A diffusion process and its applications to detecting a change in the drift of Brownian motion. Biometrika 72, 267–280 (1985)

    Article  MathSciNet  Google Scholar 

  25. Polunchenko, A.S., Tartakovsky, A.G.: State-of-the-art in sequential change-point detection. Methodol. Comput. Appl. Prob. 14, 649–684 (2012)

    Article  MathSciNet  Google Scholar 

  26. Polunchenko, A.S., Sokolov, G., Du, W.: An accurate method for determining the pre-change run length distribution of the generalized Shiryaev-Roberts Detection Procedure. Sequential Anal. 33, 112–134 (2014)

    Article  MathSciNet  Google Scholar 

  27. Potgieter, C.J.: Sequential monitoring of circular processes related to the von Mises. In: Lio , Y., et al. (Eds.), Statistical Quality Technologies, ICSA Book Series in Statistics, pp. 127–149 (2019)

    Google Scholar 

  28. Reynolds, M.R.: A Sequential Nonparametric Test for Symmetry with Applications to Process Control (No. TR-148). Stanford University Department of Operations Research Technical Report Series (1972)

    Google Scholar 

  29. Roberts, S.W.: A comparison of some control chart procedures. Technometrics 8, 411–430 (1966)

    Article  MathSciNet  Google Scholar 

  30. Rushton, J.H.: Mixing of liquids in chemical processing. Industrial Eng. Chem. 44, 2931–2936 (1952)

    Article  Google Scholar 

  31. SenGupta, A., Laha, A.K.: A Bayesian analysis of the change-point problem for directional data. J. Appl. Statist. 35(2008), 693–700 (2008)

    Article  MathSciNet  Google Scholar 

  32. SenGupta, A., Laha, A.K.: A likelihood integrated method for exploratory graphical analysis of change point problem with directional data. Commun. Statist.-Theor. Methods 37, 1783–1791 (2008)

    Article  MathSciNet  Google Scholar 

  33. Smith, A.F.M., Gelfand, A.E.: Bayesian statistics without tears: a sampling-resampling perspective. Am. Statist. 46, 84–88 (1992)

    MathSciNet  Google Scholar 

  34. Srivastava, M., Wu, Y.: Comparison of EWMA, CUSUM and Shiryayev-Roberts procedures for detecting a shift in the mean. Ann. Statist. 21, 645–670 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelis J. Potgieter .

Editor information

Editors and Affiliations

Appendix: Continuous Time Analog of the S-R Procedure

Appendix: Continuous Time Analog of the S-R Procedure

Denote by \(\mu _{0}\) the targeted shift and by \(\mu \) the actual shift occurring at the changepoint \(\tau \). The process underlying likelihood ratio is

$$\begin{aligned} C_{n}=\left\{ \begin{array}{lc} \sum \nolimits _{j=1}^{n}\left[ \cos (Z_{j}-\mu _{0})-\cos (Z_{j})\right] &{} n<\tau \\ &{} \\ C_{\tau -1}+\sum \nolimits _{j=\tau }^{n}\left[ \cos (Z_{j}-\mu _{0}-\mu )-\cos (Z_{j}-\mu )\right] &{} n\ge \tau \end{array} \right. \end{aligned}$$
(5)

We will need the following facts in the development which follows, namely

$$\begin{aligned} E[\cos (Z)]=A(\kappa ),\ E[\sin (Z)]=0,\ var[\sin (Z)]=\ \frac{A(\kappa )}{\kappa }. \end{aligned}$$

Let m denote the number of observations accruing per unit time. A non-degenerate continuous time version of the underlying process can be constructed by letting \(m\rightarrow \infty \) and simultaneously letting \(\mu _{0}\) and \(\mu \) \(\rightarrow 0\) at an appropriate rate. Toward this, set

$$\begin{aligned} n=[mt],\ \tau =[m\gamma ]\ \text {for }t,\gamma >0 \end{aligned}$$

and

$$\begin{aligned} \mu _{0}=\frac{\theta _{0}}{\sqrt{m}},\ \mu =\frac{\theta }{\sqrt{m}}. \end{aligned}$$

For \(n<\tau \), we then find upon expanding the deterministic trigonometric coefficients that

$$\begin{aligned} C_{[mt]}&=\left( \cos (\frac{\theta _{0}}{\sqrt{m}})-1\right) \sum \nolimits _{j=1}^{[mt]}\cos (Z_{j})+\sin (\frac{\theta _{0}}{\sqrt{m}})\sum \nolimits _{j=1}^{[mt]}\sin (Z_{j}) \\&\\&=\left( -\frac{\theta _{0}^{2}}{2}+O(\frac{1}{m})\right) \frac{1}{m}\sum \nolimits _{j=1}^{[mt]}\cos (Z_{j})+\theta _{0}\left( 1+O(\frac{1}{\sqrt{m}})\right) \frac{1}{\sqrt{m}}\sum \nolimits _{j=1}^{[mt]}\sin (Z_{j}). \end{aligned}$$

Letting \(m\rightarrow \infty \), it follows from the strong law of large numbers that for every finite \(T<\gamma \),

$$\begin{aligned} \frac{1}{m}\sum \nolimits _{j=1}^{[mt]}\cos (Z_{j})\rightarrow _{a.s}A(\kappa )t \end{aligned}$$

uniformly on [0, T] and from Donsker’s theorem (Billingsley [1], Theorem 8.2) that

$$\begin{aligned} \frac{1}{\sqrt{m}}\sum \nolimits _{j=1}^{[mt]}\sin (Z_{j})\rightarrow _{\mathcal {L}}B_{t},\ 0\le t<T \end{aligned}$$

with a standard Brownian motion B. Thus, for \(t<\gamma \) the continuous time version of \(C_{n}\) is

$$\begin{aligned} \tilde{C}_{t}=-\frac{\theta _{0}^{2}}{2}A(\kappa )t+\theta _{0}\sqrt{\frac{A(\kappa )}{\kappa }}B_{t} \end{aligned}$$
(6)

Next, for \(T\ge t\ge \gamma ,\)

$$\begin{aligned} C_{[mt]}-C_{[m\gamma ]}=\sum \nolimits _{j=\left[ m\tau \right] }^{\left[ nt \right] }\left[ \cos (Z_{j}-\mu _{0}-\mu )-\cos (Z_{j}-\mu )\right] \end{aligned}$$

and a computation similar to the preceding one leads to the continuous time version

$$\begin{aligned} \tilde{C}_{t}=\tilde{C}_{\gamma }+\frac{1}{2}\theta _{0}(2\theta -\theta _{0})A(\kappa )(t-\gamma )+\theta _{0}\sqrt{\frac{A(\kappa )}{\kappa }}\left( B_{t}-B_{\gamma }\right) \end{aligned}$$
(7)

Putting (6) and (7) together, we find after some algebraic manipulation that the continuous time version of \(C_{n}\) from (5) is

$$\begin{aligned} \tilde{C}_{t}=-\frac{\theta _{0}^{2}}{2}A(\kappa )t+\theta A(\kappa )(t-min\{t,\gamma \})_{.}+\theta _{0}\sqrt{\frac{A(\kappa )}{\kappa }}B_{t} \end{aligned}$$

for all \(t>0\). This is in the same form as the general change point process \(\xi _{t}\) formulated by Srivastava and Wu ([34], next to last paragraph page 649). Hence, their results and those of Pollak and Siegmund [24] are also applicable in our situation.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Potgieter, C.J., Lombard, F., Hawkins, D.M. (2022). Statistical Process Control on the Circle: A Review and Some New Results. In: SenGupta, A., Arnold, B.C. (eds) Directional Statistics for Innovative Applications. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-19-1044-9_23

Download citation

Publish with us

Policies and ethics