Skip to main content

Bivariate Cardioid Distributions

  • Chapter
  • First Online:
Directional Statistics for Innovative Applications

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

  • 586 Accesses

Abstract

Bivariate generalizations of the cardioid distribution have been constructed by the mixture method. Two types of mixtures have been considered. These mixture models allow the joint probability density functions to be represented as Fourier series easily, and this facilitates parameter estimation. A test of uniformity or isotropy of a given set of directions for one bivariate model is developed. For another bivariate model, a test of independence is derived. A data set on orientation of nests of 50 scrub birds and creek directions has also been analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh, H., Hnizdo, V., Demchuk, E.: Probablistic model for two dependent circular variables. Biometrika 89, 719–723 (2002)

    Article  MathSciNet  Google Scholar 

  2. SenGupta, A.: On the construction of probability distributions for directional data. Bull. Calcutta Math. Soc. 96(2), 139–154 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Ong, S.H., SenGupta, A.: Bivariate and multivariate circular distributions by mixtures. J. Indian Statist. Assoc. 50, 193–204 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Ong, S.H.: The computer generation of bivariate binomial variables with given marginals and correlation. Commun. Statist. - Simul. Comput. 21, 285–299 (1992)

    Article  Google Scholar 

  5. Ong, S.H.: Canonical expansions, correlation structure and conditional distributions of bivariate distributions generated by mixtures. Commun. Statist.-Theor. Method 22, 2527–2547 (1993)

    Google Scholar 

  6. Michael, J.R., Schucany, W.R.: The mixture approach for simulating bivariate distributions with specific correlations. Am. Statist. 56, 48–54 (2002)

    Article  Google Scholar 

  7. SenGupta, A., Ong, S.H.: A unified approach for construction of probability models for bivariate linear and directional data. Commun. Statist. Theor. Methods 43:10–12, 2563–2569 (2014)

    Google Scholar 

  8. SenGupta, A., Shimizu, K., Ong, S.H., Das, R.: A flexible family of mixed distributions for discrete linear and continuous circular random variables. In: Arnold, B.C., Balakrishnan, N., Coelho, C.A. (Eds.), Contributions to Statistical Distribution Theory and Inference - Festschrift in Honor of C. R. Rao on the Occasion of his 100th Birthday, pp. 365-382. Springer, New York (2021)

    Google Scholar 

  9. Jammalamadaka, S., SenGupta, A.: Topics in circular statistics. Multivariate Anal. 5 (World Scientific) (2001)

    Google Scholar 

  10. Ahsanullah M.: Sine-skewed cardioid distribution. In: Seydi H., Lo G.S., Diakhaby, A.A. (Eds.), Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of the late Galaye Dia. Spas Editions, Euclid Series Book, pp. 45–55 (2018)

    Google Scholar 

  11. Salavati, E.: An Extension of the Cardioid Distributions on Circle (2019). Available via DIALOG. arXiv:2001.00013v1 [math.PR]

  12. Wang, M.-Z., Shimizu, K.: On applying Mobius transformation to cardioid random variables. Statist. Methodol. 9, 604–614 (2012)

    Article  Google Scholar 

  13. Ong, S.H.: Computation of bivariate gamma and inverted-beta distribution functions. J. Statist. Comput. Simul. 51, 153–163 (1995)

    Article  Google Scholar 

  14. Marshall, A.W., Olkin, I.: Families of multivariate distributions. J. Am. Statist. Assoc. 83, 834–841 (1988)

    Article  MathSciNet  Google Scholar 

  15. Bates, G.E., Neyman, J.: Contributions to the theory of accident proneness. I. Univ. Calif. Publ. Statist. 1, 215–254 (1952)

    MATH  Google Scholar 

  16. Ishii, G., Hayakawa, R.: On the compound binomial distribution. Ann Inst. Statist. Math. 12, 69–80 (1960)

    Article  MathSciNet  Google Scholar 

  17. Hutchinson, T.P.: Four applications of a bivariate Pareto distribution. Biom. J. 21, 553–563 (1979)

    Article  Google Scholar 

  18. Ong, S.H., Lee, P.A.: On the bivariate negative binomial distribution of Mitchell and Paulson. Navals Res. Logistics Quart. 32, 457–465 (1985)

    Article  MathSciNet  Google Scholar 

  19. Ong, S.H.: Mixture formulations of a bivariate negative binomial distribution with applications. Commun. Statist. - Theor. Method 19, 1303–1322 (1990)

    Article  MathSciNet  Google Scholar 

  20. Jones, M.C.: Multivariate t and the beta distributions associated with the multivariate F distribution. Metrika 54, 215–231 (2001)

    Article  MathSciNet  Google Scholar 

  21. Olkin, I., Liu, R.: A bivariate beta distribution. Statist. Prob. Lett. 62, 407–412 (2003)

    Article  MathSciNet  Google Scholar 

  22. Balakrishnan, N., Lai, C.D.: Continuous Bivariate Distributions (2nd Edn). Springer, Berlin (2008)

    Google Scholar 

  23. Fisher, N.I.: Statistical Analysis of Circular Data. Cambridge University Press (1993)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the reviewer for the insightful comments which have improved the paper. S. H. Ong is supported by Ministry of Higher Education grant FRGS/1/2020/STG06/SYUC/02/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seng-Huat Ong .

Editor information

Editors and Affiliations

8 Appendix

8 Appendix

Derivation of bivariate cardioid distribution Model II (b):

The bivariate beta distribution of [20, 21] has pdf g(x, y) given by

$$\begin{aligned} g(x,y) = \frac{\Gamma (a+b+c)}{\Gamma (a)\Gamma (b)\Gamma (c)} \frac{x^{a-1}y^{b-1}(1-x)^{b+c-1}(1-y)^{a+c-1}}{(1-xy)^{a+b+c}}, 0\le x,y<1 \end{aligned}$$

with a, b and \(c>0\). The X and Y marginals are beta distributions B(x; a, c) and B(y; b, c), respectively. Note that this bivariate beta distribution is defined over \(0\le x,y<1\) as opposed to bivariate beta distribution in (10) where \(0\le x+y<1\).

This bivariate beta distribution has infinite series representation ([21])

$$\begin{aligned} g(x,y)= \sum _{i=0}^{\infty }de_i\frac{x^{a+i-1}(1-x)^{b+c-1}y^{b+i-1}(1-y)^{a+c-1}}{B(a+i,b+c)B(b+i,a+c)} \end{aligned}$$
(29)

where \(B(a,b,c)= \frac{\Gamma (a)\Gamma (b)\Gamma (c)}{\Gamma (a+b+c)}\), \(d = \frac{\Gamma (a+c)\Gamma (b+c)}{\Gamma (c)\Gamma (a+b+c)}\) and \(e_i = \frac{(a)_i(b)_i\Gamma (c)}{(a+b+c)_i i!}\)

By using (29),

$$\begin{aligned} {\begin{matrix} &{} f(\theta _1,\theta _2)= \sum _{i=0}^{\infty }de_i \int _{0}^{1}\{1+2x\delta _1\cos (\theta _1-\mu )\}\frac{x^{a+i-1}(1-x)^{b+c-1}}{B(a+i, b+c)}dx \\ &{} . \int _{0}^{1}\{1+2y\delta _2\cos (\theta _2-\mu )\}\frac{y^{b+i-1}(1-y)^{a+c-1}}{B(b+i,a+c)}dy \end{matrix}} \end{aligned}$$
(30)

Since

$$\begin{aligned} \int _{0}^{1}\{1+2x\delta _1\cos (\theta _1-\mu )\} \frac{x^{a+i-1}(1-x)^{b+c-1}}{B(a+i, b+c)}dx = 1+2 \frac{a+i}{a+b+c+i}\delta _1\cos (\theta _1-\mu ), \end{aligned}$$
$$\begin{aligned} \int _{0}^{1}\{1+2y\delta _2\cos (\theta _2-\mu )\} \frac{y^{b+i-1}(1-y)^{a+c-1}}{B(b+i, a+c)}dy = 1+2 \frac{b+i}{a+b+c+i}\delta _2\cos (\theta _2-\mu ) \end{aligned}$$

pdf (30) becomes

$$\begin{aligned} {\begin{matrix} &{}f(\theta _1,\theta _2)\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ &{}= \sum _{i=0}^{\infty }de_i \Big \{1+2\frac{a+i}{a+b+c+i}\delta _1\cos (\theta _1-\mu )\Big \}\Big \{1+2\frac{b+i}{a+b+c+i}\delta _2\cos (\theta _2-\mu )\Big \} \\ &{}= \sum _{i=0}^{\infty }de_i \Big \{1+2\frac{a+i}{a+b+c+i}\delta _1\cos (\theta _1-\mu )+2\frac{b+i}{a+b+c+i}\delta _2\cos (\theta _2-\mu ) \\ &{}+ 4\frac{a+i}{a+b+c+i}\frac{b+i}{a+b+c+i} \delta _1\delta _2\cos (\theta _1-\mu )\cos (\theta _2-\mu )\Big \}. \end{matrix}} \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ong, SH., SenGupta, A. (2022). Bivariate Cardioid Distributions. In: SenGupta, A., Arnold, B.C. (eds) Directional Statistics for Innovative Applications. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-19-1044-9_13

Download citation

Publish with us

Policies and ethics