Skip to main content

Implementation and Performance Evaluation of Binary to Gray Code Converter Using Quantum Dot Cellular Automata

  • Conference paper
  • First Online:
Inventive Systems and Control

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 436))

Abstract

Quantum dot cellular automata (QCA) is one of the most well-known nanometre-scale technologies, offering significant size and power reductions as well as a fast switching frequency to surpass the scaling restrictions of complementary metal-oxide semiconductors. A new technological revolution is necessary when an existing technology approaches a deadlock. In response to new challenges in current technology, a complex technology based on Quantum dot cellular automata (QCA) is developed. QCA is an intriguing field of nano-computing technology that offers unmatched compactness, high-speed operation, and very low-power consumption. In comparison to other designs, a 4-bit Binary to Gray Converter with various designs has been illustrated in this article with minimal cell utilization using QCAD simulation tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Misra NK, Wairya S, Singh VK (2015, 2016) Optimized approach for reversible code converters using quantum dot cellular automata. In: Proceedings of the 4th international conference on frontiers in intelligent computing: theory and applications (FICTA). Springer, pp 367–378

    Google Scholar 

  2. Chakrabarty R, Mukherjee P, Acharjee R, Kumar R, Saha A, Kar N (2016) Reliability analysis of a noiseless code converter using quantum dot cellular automata. In: 2016 IEEE 7th annual information technology, electronics and mobile communication conference (IEMCON). IEEE, pp 1–8

    Google Scholar 

  3. Porod W (1997) Quantum-dot devices and quantum-dot cellular automata. J Franklin Inst 334(5–6):1147–1175

    Article  Google Scholar 

  4. Seyedi S, Navimipour NJ (2018) Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun Netw 16:1–9

    Article  Google Scholar 

  5. Patidar M, Gupta N (2019) Efficient design and simulation of novel exclusive-OR Gate based on nanoelectronics using quantum-dot cellular automata. In: Proceeding of the second international conference on microelectronics, computing & communication systems (MCCS 2017). Springer, Berlin, pp 599–614

    Google Scholar 

  6. Kummamuru RK, Orlov AO, Ramasubramaniam R, Lent CS, Bernstein GH, Snider GL (2003) Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Trans Electron Dev 50(9):1906–1913 (Return to ref 6 in article)

    Google Scholar 

  7. Chaves JF, Ribeiro MA, Silva LM, de Assis LM, Torres MS, Neto OPV (2018) Energy efficient QCA circuits design: simulating and analyzing partially reversible pipelines. J Comput Electron 17(1):479–489

    Article  Google Scholar 

  8. Mohaghegh SM, Sabbaghi-Nadooshan R, Mohammadi M (2018) Designing ternary quantum-dot cellular automata logic circuits based upon an alternative model. Comput Electr Eng 71:43–59

    Article  Google Scholar 

  9. Sherizadeh R, Navimipour NJ (2018) Designing a 2–4 decoder on nanoscale based on quantum-dot cellular automata for energy dissipation improving. Optik-Int J Light lectron Opt 158:477–489

    Article  Google Scholar 

  10. Shu XB, Li LN, Ren MM, Mohammed BO (2021) A new binary to gray code converter based on quantum-dot cellular automata nanotechnology. Photon Netw Commun 41(1):102–108

    Article  Google Scholar 

  11. Mehta U, Dhare V (2017) Quantum-dot cellular automata (QCA): a survey. arXiv preprint arXiv:1711.08153

  12. Banerjee A, Mahato DK, Choudhuri S, Dey M, Chakraborty R (2018) Performance evaluation of controlled inverter using quantum dot cellular automata (QCA). Perform Eval 5(02)

    Google Scholar 

  13. Fam SR, Navimipour NJ (2019) Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw Commun 37(1):120–130

    Article  Google Scholar 

  14. Gadim MR, Navimipour NJ (2018) A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst Technol 24:1–11

    Article  Google Scholar 

  15. Mukherjee C, Panda S, Mukhopadhyay AK, Maji B (2018) QCA gray code converter circuits using LTEx methodology. Int J Theor Phys 57(7):2068–2092 (Return to ref 12 in article MathSciNet)

    Google Scholar 

  16. Heikalabad SR, Kamrani H (2019) Design and implementation of circuit-switched network based on nanoscale quantum-dot cellular automata. Photon Netw Commun 38(3):356–377

    Article  Google Scholar 

  17. Chakraborty R, Banerjee A, Mahato DK, Choudhuri S, Mandal N (2018) Design of binary to gray code converter for error correction in communication systems using layered quantum dot cellular automata: In: 2018 2nd international conference on electronics, materials engineering & nano-technology (IEMENTech), IEEE, pp 1–7

    Google Scholar 

  18. Afrooz S, Navimipour NJ (2017) Memory designing using quantum-dot cellular automata: systematic literature review, classification and current trends. J Circ Syst Comput 26:1730004

    Article  Google Scholar 

  19. Moharrami E, Navimipour NJ (2018) Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int J Theor Phys 57(4):1060–1081 (MathSciNet)

    Google Scholar 

  20. Abedi D, Jaberipur G (2018) Decimal full adders specially designed for quantum-dot cellular automata. IEEE Trans Circ Syst II Express Br 65(1):106–110

    Google Scholar 

  21. Lent CS, Douglas Tougaw P (1993) . Lines of interacting quantum‐dot cells: a binary wire. J Appl Phys 74(10):6227–6233

    Google Scholar 

  22. Lent CS, Douglas Tougaw P, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4(1):49–57

    Google Scholar 

  23. Taray AS, Singh SK, Hazra P (2021) Design and optimization of reversible binary to. Gray and gray to binary code converter with. Power dissipation analysis using QCA. Int J Eng Res Comput Sci Eng 8(6)

    Google Scholar 

  24. Ravindran RE, Santhosh C, Surya Teja S, Arun Sujash S, Vijay M, Umesh K (2020) Design of reversible and non-reversible binary to gray and gray to binary converter using quantum Dot cellular automata. Int J 9(3)

    Google Scholar 

  25. Karkaj ET, Heikalabad SR (2017) Binary to gray and gray to binary converter in quantum-dot cellular automata. Optik 130:981–989

    Article  Google Scholar 

  26. Majeed AH (2017) A novel design binary to Gray converter with QCA nanotechnology. Int J Adv Eng Res Dev 4(9)

    Google Scholar 

  27. Chakrabarty R, Roy S, Pathak T, Ghosh D, Mandal NK (2021) Design of 2: 4 and 3: 8 decoder circuit using QCA technology. Haнocиcтeмы: физикa, xимия, мaтeмaтикa 12(4):442–452

    Google Scholar 

  28. Tripathi D, Wairya S (2021) A cost efficient QCA code converters for nano communication applications. Int J Comput Digit Syst

    Google Scholar 

  29. Sridharan K, Pudi V (2015) QCA terminology. In: Design of arithmetic circuits in quantum dot cellular automata nanotechnology. Springer, Cham, pp 11–17

    Google Scholar 

  30. Liu W, Lu L, O’Neill M, Swartzlander EE (2014) A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans Nanotechnol 13(3):476–487

    Article  Google Scholar 

  31. Guleria N (2017) Binary to gray code converter implementation using QCA. In: 2017 3rd international conference on advances in computing, communication & automation (ICACCA)(Fall). IEEE, pp 1–6

    Google Scholar 

  32. Chakrabarty R, Saha A, Adhikary S, Das S, Tarafder J, Das T, Dey S (2016) Comparative analysis of code converter using quantum dot cellular automata (QCA). In: 2016 IEEE 7th annual information technology, electronics and mobile communication conference (IEMCON). IEEE, pp 1–6

    Google Scholar 

  33. Beiki Z, Shahidinejad A (2014) An introduction to quantum cellular automata technology and its defects. Rev Theor Sci 2(4):334–342

    Article  Google Scholar 

  34. Bhamra KS, Joshi G, Kumar N (2021) An efficient design of binary to gray code binary converter using QCA. In: IOP conference series: materials science and engineering, vol 1033, No. 1. IOP Publishing, p 012014

    Google Scholar 

  35. Purkayastha T, Chattopadhyay T, De D, Mahata A (2015) Realization of data flow in QCA tile structure circuit by potential energy calculation. Proc Mater Sci 10:353–360

    Article  Google Scholar 

  36. Ahmed S, Naz SF, Sharma S, Ko SB (2021) Design of quantum-dot cellular automata-based communication system using modular N-bit binary to gray and gray to binary converters. Int J Commun Syst 34(4):e4702

    Article  Google Scholar 

  37. Laajimi R, Niu M (2018) Nanoarchitecture of quantum-dot cellular automata (QCA) using small area for digital circuits. In: Advanced electronics circuits–principles, architectures and applications on emerging technologies, pp 67–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Samanvita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, U., Pradeep, K., Samanvita, N., Raman, S. (2022). Implementation and Performance Evaluation of Binary to Gray Code Converter Using Quantum Dot Cellular Automata. In: Suma, V., Baig, Z., Kolandapalayam Shanmugam, S., Lorenz, P. (eds) Inventive Systems and Control. Lecture Notes in Networks and Systems, vol 436. Springer, Singapore. https://doi.org/10.1007/978-981-19-1012-8_21

Download citation

Publish with us

Policies and ethics