Skip to main content

Carbonaceous-TiO2 Photocatalyst for Treatment of Textile Dye-Contaminated Wastewater

  • Chapter
  • First Online:
Advanced Oxidation Processes in Dye-Containing Wastewater

Abstract

The rising quantity and toxicity of dye-enriched industrial effluents due to rapid industrialization is a foremost and emerging concern throughout the world. The presence of dyes in the waterbodies possesses a threat to aquatic life and can annihilate the environment and human health. Therefore, before discharge, the treatment of dye-contaminated industrial effluents is of paramount importance. Heterogeneous photocatalysis, an advanced oxidation process (AOP), is a sustainable and effective treatment approach that has a greater potential for the catalytic eradication of dyes by generating highly reactive radicals. In general, titanium dioxide (TiO2) semiconductor photocatalyst is extensively used for the photocatalytic degradation of dyes. However, owing to various drawbacks associated with TiO2 photocatalysts such as higher electronhole pair recombination and larger bandgap, the TiO2 photocatalyst is modified by coupling with carbonaceous materials for higher photocatalytic activity and visible light-harvesting ability. Therefore, this chapter briefly describes the mechanism involved in the photocatalytic degradation of dye and elucidates the different methods for synthesizing carbonaceous-based TiO2 composites comprising activated carbon, graphene derivatives, carbon doping, and carbon nanotubes for dye removal. Also, the chapter precisely focuses on the existing and recent studies on dye removal using carbonaceous-based TiO2 materials. Therefore, this study will be useful for engineers and researchers working in the domain of industrial wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shanker U, Rani M, Jassal V (2017) Degradation of hazardous organic dyes in water by nanomaterials. Environ Chem Lett 15:623–642. https://doi.org/10.1007/s10311-017-0650-2

    Article  CAS  Google Scholar 

  2. Benkhaya S, M’rabet B, El Harfi A (2020) A review on classifications, recent synthesis and applications of textile dyes. Inorg Chem Commun 115:107891. https://doi.org/10.1016/j.inoche.2020.107891

    Article  CAS  Google Scholar 

  3. Benkhaya S, M’rabet S, El Harfi A (2020) Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 6. https://doi.org/10.1016/j.heliyon.2020.e03271

  4. Saini RD (2017) Textile organic dyes: polluting effects and elimination methods from textile waste water. Int J Chem Eng Res 9:975–6442

    Google Scholar 

  5. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275–290. https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  6. Sharma K, Dalai AK, Vyas RK (2017) Removal of synthetic dyes from multicomponent industrial wastewaters. Rev Chem Eng 34:107–134. https://doi.org/10.1515/revce-2016-0042

    Article  CAS  Google Scholar 

  7. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manag 182:351–366. https://doi.org/10.1016/j.jenvman.2016.07.090

  8. Ahmad A, Razali MH, Mamat M, Kassim K, Amin KAM (2020a) Physiochemical properties of TiO2 nanoparticle loaded APTES-functionalized MWCNTs composites and their photocatalytic activity with kinetic study. Arab J Chem 13:2785–2794. https://doi.org/10.1016/j.arabjc.2018.07.009

    Article  CAS  Google Scholar 

  9. Ahmad K, Ghatak HR, Ahuja SM (2020b) A review on photocatalytic remediation of environmental pollutants and H2 production through water splitting: a sustainable approach. Environ Technol Innov Elsevier B.V. https://doi.org/10.1016/j.eti.2020.100893

  10. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14. https://doi.org/10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  11. Zangeneh H, Zinatizadeh AAL, Habibi M, Akia M, Hasnain Isa M (2015) Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J Ind Eng Chem 26:1–36. https://doi.org/10.1016/j.jiec.2014.10.043

    Article  CAS  Google Scholar 

  12. Zhang L, Mohamed HH, Dillert R, Bahnemann D (2012) Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review. J Photochem Photobiol C Photochem Rev 13:263–276. https://doi.org/10.1016/j.jphotochemrev.2012.07.002

    Article  CAS  Google Scholar 

  13. Mohd Adnan MA, Muhd Julkapli N, Amir MNI, Maamor A (2019) Effect on different TiO2 photocatalyst supports on photodecolorization of synthetic dyes: a review. Int J Environ Sci Technol 16:547–566. https://doi.org/10.1007/s13762-018-1857-x

    Article  CAS  Google Scholar 

  14. Subramaniam MN, Goh PS, Lau WJ, Ng BC, Ismail AF (2018) Development of nanomaterial-based photocatalytic membrane for organic pollutants removal. In: Advanced nanomaterials for membrane synthesis and its applications. Elsevier Inc., Amsterdam. https://doi.org/10.1016/B978-0-12-814503-6.00003-3

  15. Leong S, Razmjou A, Wang K, Hapgood K, Zhang X, Wang H (2014) TiO2 based photocatalytic membranes: a review. J Memb Sci 472:167–184. https://doi.org/10.1016/j.memsci.2014.08.016

    Article  CAS  Google Scholar 

  16. Khalid NR, Majid A, Tahir MB, Niaz NA, Khalid S (2017) Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review. Ceram Int 43:14552–14571. https://doi.org/10.1016/j.ceramint.2017.08.143

    Article  CAS  Google Scholar 

  17. Ng JJ, Leong KH, Sim LC, Oh WD, Dai C, Saravanan P (2020) Environmental remediation using nano-photocatalyst under visible light irradiation: the case of bismuth phosphate. In: Nanomaterials for air remediation. Elsevier Inc., Amsterdam. https://doi.org/10.1016/B978-0-12-818821-7.00010-5

  18. Suvaci E, Özel E (2020) Hydrothermal synthesis. In: Ref. Modul. Mater. Sci. Mater. Eng. pp 1–10. https://doi.org/10.1016/b978-0-12-803581-8.12096-x

  19. Li D, Liang Z, Zhang W, Dai S, Zhang C (2021) Preparation and photocatalytic performance of TiO2-RGO-CuO/Fe2O3 ternary composite photocatalyst by solvothermal method. Mater Res Express 8. https://doi.org/10.1088/2053-1591/abdc3b

  20. Esposito S (2019) “Traditional” sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials (Basel) 12:1–25. https://doi.org/10.3390/ma12040668

    Article  CAS  Google Scholar 

  21. Mudhoo A, Paliya S, Goswami P, Singh M, Lofrano G, Carotenuto M, Carraturo F, Libralato G, Guida M, Usman M, Kumar S (2020) Fabrication, functionalization and performance of doped photocatalysts for dye degradation and mineralization: a review. Environ Chem Lett. Springer International Publishing. https://doi.org/10.1007/s10311-020-01045-2

  22. Mohammed MKA (2020) Sol-gel synthesis of Au-doped TiO2 supported SWCNT nanohybrid with visible-light-driven photocatalytic for high degradation performance toward methylene blue dye. Optik (Stuttg) 223:165607. https://doi.org/10.1016/j.ijleo.2020.165607

    Article  CAS  Google Scholar 

  23. Valverde Aguilar G (2019) Introductory chapter: a brief semblance of the sol-gel method in research. In: Sol-gel method—Des. Synth. New Mater. with Interes. Phys. Chem. Biol. Prop. pp 3–8. https://doi.org/10.5772/intechopen.82487

  24. Kharissova OV, Kharisov BI, Valdés JJR, Méndez UO (2011) Ultrasound in nanochemistry: recent advances. Synth React Inorg Met Nano Metal Chem 41:429–448. https://doi.org/10.1080/15533174.2011.568424

    Article  CAS  Google Scholar 

  25. Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059. https://doi.org/10.1002/adma.200904093

    Article  CAS  Google Scholar 

  26. Bang JH, Suslick KS, Kharissova OV, Kharisov BI, Valdés JJR, Méndez UO (2010) Ultrasound in nanochemistry: recent advances. Synth React Inorg Met Nano Metal Chem 22:1039–1059. https://doi.org/10.1080/15533174.2011.568424

    Article  CAS  Google Scholar 

  27. Theoretical and experimental sonochemistry involving inorganic systems. Springer Netherlands, Dordrecht, pp 1–404. https://doi.org/10.1007/978-90-481-3887-6

  28. Ashokkumar M, Cavalieri F, Chemat F, Okitsu K, Sambandam A, Yasui K, Zisu B (2016) Handbook of ultrasonics and sonochemistry. Handbook of Ultrasonics and Sonochemistry. https://doi.org/10.1007/978-981-287-278-4

    Article  Google Scholar 

  29. Deshmukh SP, Kale DP, Kar S, Shirsath SR, Bhanvase BA, Saharan VK, Sonawane SH (2020) Ultrasound assisted preparation of rGO/TiO2 nanocomposite for effective photocatalytic degradation of methylene blue under sunlight. Nano Struct Nano Objects 21:100407. https://doi.org/10.1016/j.nanoso.2019.100407

    Article  CAS  Google Scholar 

  30. Cruz IF, Freire C, Araújo JP, Pereira C, Pereira AM (2018) Multifunctional ferrite nanoparticles: from current trends toward the future, magnetic nanostructured materials: from lab to fab. https://doi.org/10.1016/B978-0-12-813904-2.00003-6

  31. Athar T (2014) Smart precursors for smart nanoparticles. In: Emerging nanotechnologies for manufacturing, 2nd edn. Elsevier Inc., Amsterdam. https://doi.org/10.1016/B978-0-323-28990-0.00017-8

  32. Varanda LC, De Souza CGS, Perecin CJ, De Moraes DA, De Queiróz DF, Neves HR, Junior JBS, Da Silva MF, Albers RF, Da Silva TL (2019) Inorganic and organic-inorganic composite nanoparticles with potential biomedical applications: synthesis challenges for enhanced performance. In: Materials for biomedical engineering: bioactive materials, properties, and applications. https://doi.org/10.1016/B978-0-12-818431-8.00004-0

  33. Huang G, Lu CH, Yang HH (2018) Magnetic nanomaterials for magnetic bioanalysis. In: Novel nanomaterials for biomedical, environmental and energy applications. Elsevier Inc., Amsterdam. https://doi.org/10.1016/B978-0-12-814497-8.00003-5

  34. Ranjith R, Renganathan V, Chen SM, Selvan NS, Rajam PS (2019) Green synthesis of reduced graphene oxide supported TiO2/Co3O4 nanocomposite for photocatalytic degradation of methylene blue and crystal violet. Ceram Int 45:12926–12933. https://doi.org/10.1016/j.ceramint.2019.03.219

    Article  CAS  Google Scholar 

  35. Tsao KC, Yang H (2018) Oxygen reduction catalysts on nanoparticle electrodes. In: Encyclopedia of interfacial chemistry: surface science and electrochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-409547-2.13334-7

  36. Deraz NM (2018) The comparative jurisprudence of catalysts preparation methods: I. Precipitation and impregnation methods. J Ind Environ Chem 2(1):19–21

    Google Scholar 

  37. Munnik P, De Jongh PE, De Jong KP (2015) Recent developments in the synthesis of supported catalysts. Chem Rev 115:6687–6718. https://doi.org/10.1021/cr500486u

    Article  CAS  Google Scholar 

  38. Mehrabadi BAT, Eskandari S, Khan U, White RD, Regalbuto JR (2017) A review of preparation methods for supported metal catalysts. Advances in catalysis, 1st edn. Elsevier Inc., Amsterdam. https://doi.org/10.1016/bs.acat.2017.10.001

  39. Liu Y, Tian J, Wei L, Wang Q, Wang C, Yang C (2020) A novel microwave-assisted impregnation method with water as the dispersion medium to synthesize modified g-C3N4/TiO2 heterojunction photocatalysts. Opt Mater (Amst) 107:110128. https://doi.org/10.1016/j.optmat.2020.110128

  40. Ruppi S, Larsson A (2001) Chemical vapour deposition of κ-Al2O3. Thin Solid Films 388:50–61. https://doi.org/10.1016/S0040-6090(01)00814-8

    Article  CAS  Google Scholar 

  41. Cai Z, Liu B, Zou X, Cheng HM (2018) Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem Rev 118:6091–6133. https://doi.org/10.1021/acs.chemrev.7b00536

    Article  CAS  Google Scholar 

  42. Tang L, Tan J, Nong H, Liu B, Cheng HM (2020) Growth of two-dimensional compound materials: controllability, material quality, and growth mechanism. arXiv. https://doi.org/10.1021/accountsmr.0c00063

  43. Zhang T, Fu L (2018) Controllable chemical vapor deposition growth of two-dimensional heterostructures. Chem 4:671–689. https://doi.org/10.1016/j.chempr.2017.12.006

    Article  CAS  Google Scholar 

  44. Karfa P, Majhi KC, Madhuri R (2019) Synthesis of two-dimensional nanomaterials. In: Two-dimensional nanostructures for biomedical technology: a bridge between material science and bioengineering. Elsevier B.V., Amsterdam. https://doi.org/10.1016/B978-0-12-817650-4.00002-4

  45. Qiao SZ, Liu J, Max Lu GQ (2017) Synthetic chemistry of nanomaterials. In: Modern inorganic synthetic chemistry, 2nd edn. Elsevier B.V., Amsterdam. https://doi.org/10.1016/B978-0-444-63591-4.00021-5

  46. Koo Y, Littlejohn G, Collins B, Yun Y, Shanov VN, Schulz M, Pai D, Sankar J (2014) Synthesis and characterization of Ag-TiO2-CNT nanoparticle composites with high photocatalytic activity under artificial light. Compos Part B Eng 57:105–111. https://doi.org/10.1016/j.compositesb.2013.09.004

    Article  CAS  Google Scholar 

  47. Zhang Y, Chen J, Hua L, Li S, Zhang X, Sheng W, Cao S (2017) High photocatalytic activity of hierarchical SiO2@C-doped TiO2 hollow spheres in UV and visible light towards degradation of rhodamine B. J Hazard Mater 340:309–318. https://doi.org/10.1016/j.jhazmat.2017.07.018

    Article  CAS  Google Scholar 

  48. Luna-Flores A, Sosa-Sánchez JL, Morales-Sánchez MA, Agustín-Serrano R, Luna-López JA (2017) An easy-made, economical and efficient carbon-doped amorphous TiO2 photocatalyst obtained bymicrowave assisted synthesis for the degradation of Rhodamine B. Materials (Basel) 10. https://doi.org/10.3390/ma10121447

  49. Ovodok E, Maltanava H, Poznyak S, Ivanovskaya M, Kudlash A, Scharnagl N, Tedim J (2018) Sol-gel template synthesis of mesoporous carbon-doped TiO2 with photocatalytic activity under visible light. Mater Today Proc 5:17422–17430. https://doi.org/10.1016/j.matpr.2018.06.044

    Article  CAS  Google Scholar 

  50. Ghime D, Mohapatra T, Verma A, Banjare V, Ghosh P (2020) Photodegradation of aqueous eosin yellow dye by carbon-doped TiO2 photocatalyst. In: IOP Conf. Ser. Earth Environ. Sci., vol 597. https://doi.org/10.1088/1755-1315/597/1/012010

  51. Li W, Liang R, Zhou NY, Pan Z (2020) Carbon black-doped anatase TiO2 nanorods for solar light-induced photocatalytic degradation of methylene blue. ACS Omega 5:10042–10051. https://doi.org/10.1021/acsomega.0c00504

    Article  CAS  Google Scholar 

  52. Azzam EMS, Fathy NA, El-Khouly SM, Sami RM (2019) Enhancement the photocatalytic degradation of methylene blue dye using fabricated CNTs/TiO2/AgNPs/surfactant nanocomposites. J Water Process Eng 28:311–321. https://doi.org/10.1016/j.jwpe.2019.02.016

    Article  Google Scholar 

  53. Chen Y, Qian J, Wang N, Xing J, Liu L (2020) In-situ synthesis of CNT/TiO2 heterojunction nanocomposite and its efficient photocatalytic degradation of Rhodamine B dye. Inorg Chem Commun 119:108071. https://doi.org/10.1016/j.inoche.2020.108071

    Article  CAS  Google Scholar 

  54. Ali MHH, Al-Afify AD, Goher ME (2018) Preparation and characterization of graphene—TiO2 nanocomposite for enhanced photodegradation of Rhodamine-B dye. Egypt J Aquat Res 44:263–270. https://doi.org/10.1016/j.ejar.2018.11.009

    Article  Google Scholar 

  55. Ambika S, Srilekha V (2021) Eco-safe chemicothermal conversion of industrial graphite waste to exfoliated graphene and evaluation as engineered adsorbent to remove toxic textile dyes. Environ Adv 4:100072. https://doi.org/10.1016/j.envadv.2021.100072

  56. Pérez-Molina Á, Morales-Torres S, Maldonado-Hódar FJ, Pastrana-Martínez LM (2020) Functionalized graphene derivatives and TiO2 for high visible light photodegradation of azo dyes. Nanomaterials 10:1–17. https://doi.org/10.3390/nano10061106

    Article  CAS  Google Scholar 

  57. Elshahawy MF, Mahmoud GA, Raafat AI, Ali AEH, Soliman EsA (2020) Fabrication of TiO2 reduced graphene oxide based nanocomposites for effective of photocatalytic decolorization of dye effluent. J Inorg Organomet Polym Mater 30:2720–2735. https://doi.org/10.1007/s10904-020-01463-3

    Article  CAS  Google Scholar 

  58. Rgo O, Tio B, Jing Z, Dai X, Xian X, Zhang Q, Zhong H, Li Y (2020) Enhanced adsorption and visible-light induced

    Google Scholar 

  59. Belayachi H, Bestani B, Benderdouche N, Belhakem M (2019) The use of TiO2 immobilized into grape marc-based activated carbon for RB-5 azo dye photocatalytic degradation. Arab J Chem 12:3018–3027. https://doi.org/10.1016/j.arabjc.2015.06.040

    Article  CAS  Google Scholar 

  60. Moosavi S, Li RYM, Lai CW, Yusof Y, Gan S, Akbarzadeh O, Chowhury ZZ, Yue XG, Johan MR (2020) Methylene blue dye photocatalytic degradation over synthesised Fe3O4/AC/TiO2 nano-catalyst: degradation and reusability studies. Nanomaterials 10:1–15. https://doi.org/10.3390/nano10122360

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambika Selvaraj .

Editor information

Editors and Affiliations

Ethics declarations

The corresponding author would like to acknowledge the Science Engineering and Research Board (SERB), India for their support for the computing facility under Start up Research Grant (File Number: SRG/2020/000793) and Seed Grant (letter dated 15.5.2020) from Indian Institute of Technology Hyderabad, India.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, A., Selvaraj, A. (2022). Carbonaceous-TiO2 Photocatalyst for Treatment of Textile Dye-Contaminated Wastewater. In: Muthu, S.S., Khadir, A. (eds) Advanced Oxidation Processes in Dye-Containing Wastewater. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-0987-0_14

Download citation

Publish with us

Policies and ethics