Skip to main content

Reduced Complexity of LDPC Codes using Hard Decision Decoder

  • Conference paper
  • First Online:
Computer Networks, Big Data and IoT

Abstract

Low-density parity-check (LDPC) codes, invented in the 1960s by Gallegar, are a significant topic in coding theory and have large number of practical applications in various scientific domains. Different variants of LDPC codes are developed in the literature which are having better performing encoding as well as decoding procedures. The design of these LDPC coding algorithms is in such a way that it can get back the original message codeword even in the case of massive amount of noise in the communication channel or missing some codeword bits. Therefore, LDPC codes are perfect candidates for real-time applications. This paper presents an efficient message passing procedure to perform the decoding of LDPC codes. The proposed procedure results in the reduction of computational complexity. This procedure exploits hard decision decoding method. The experimental simulation is also performed using additive white Gaussian noise (AWGN) channel through which we obtained different bit error rate (BER) values corresponding to different threshold and signal-to-noise ratio (SNR) values. The adaptability of this simulation is in practical usage in wireless sensor network scenario. In the experiment results, it is observed that with the increase of SNR values in the 1–30 db, BER values are decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)

    Google Scholar 

  2. Bose, R.C., Ray-Chaudhuri, D.K.: Inf. Control. On a class of error correcting binary group codes 3(1), 68–79 (1960)

    Google Scholar 

  3. Gallager, R.G.: Low-Density Parity-Check Codes. MIT Press, Cambridge, MA (1963)

    Google Scholar 

  4. Chang, T.C., Wang, P., Su, Y.T.: IEEE Commun. Lett. Multi-stage bit-flipping decoding algorithms for LDPC codes 23(9), 1524–1528 (2019)

    Google Scholar 

  5. Wang, L., Wang, D., Ni, Y., Chen, X., Cui, M., Yang, F.: China Commun. Design of irregular QC-LDPC code based multi-level coded modulation scheme for high speed optical communication systems 16(5), 106–120 (2019)

    Google Scholar 

  6. Wyner, A.D.: The wire-tap channel,. B.S.T.J., vol. 54, no. 8, pp. 1355–1387 (1975)

    Google Scholar 

  7. Thangaraj, A., Dihidar, S., Calderbank, A.R., McLaughlin, S., Merolla, J.-M.: Applications of LDPC codes to the wiretap channel. IEEE Trans. Inf. Theory 53(8), 2933–2945 (2007)

    Google Scholar 

  8. McEliece, Robert J.: DSN Prog. Rep. A public-key cryptosystem based On algebraic coding theory (PDF) 44, 114–116 (1978)

    Google Scholar 

  9. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob. Control Inf. Theory. Problemy Upravlenija i Teorii Informacii. 15, 159–166 (1986)

    Google Scholar 

  10. Liu, R., Zeng, B., Chen, T., Liu, N., Yin, N.: The application of LDPC code in MIMO-OFDM system. IOP Conf. Ser.: Mater. Sci. Eng. 322(7) (2018)

    Google Scholar 

  11. Fossorier, M.P.C., Mihaljevic, M., Imai, H.: IEEE Trans. Commun. Reduced complexity iterative decoding of low density parity check codes based on belief propagation 47(5), 673–680 (1999)

    Google Scholar 

  12. Wiberg, N.: Codes and decoding on general graphs. Ph.D. dissertation. Linköping University, Linköping, Sweden (1996)

    Google Scholar 

  13. Eleftheriou, E., Mittelholzer, T., Dholakia, A.: Reduced-complexity decoding algorithm for low-density parity-check codes. IEE Electron. Lett. 37, 102–104 (2001)

    Article  Google Scholar 

  14. Chen, J., Fossorier, M.P.C.: Decoding low-density parity-check codes with normalized APP-based algorithm. In: Proceedings, pp. 1026–1030. San Antonio, TX. IEEE Globecom (2001)

    Google Scholar 

  15. Hu, X.-Y., Eleftheriou, E., Arnold, D.-M., Dholakia, A.: Efficient implementation of the sum-product algorithm for decoding LDPC codes. In: Proceedings, pp. 1036-1036E. San Antonio, TX. IEEE Globecom (2001)

    Google Scholar 

  16. Chen, J., Fossorier, M.P.C.: IEEE Trans. Commun. Near-optimum universal belief-propagation-based decoding of low-density parity-check codes 50(3), 406–414 (2002)

    Google Scholar 

  17. Chen, J., Fossorier, M.P.C.: Density evolution for two improved BP-based decoding algorithms of LDPC codes. IEEE Commun. Lett. 6(5), 208–210 (2002)

    Google Scholar 

  18. Li, P., Leung, W.K.: IEEE Commun. Lett. Decoding low-density parity-check codes with finite quantization bits 4(2), 62–64 (2000)

    Google Scholar 

  19. Chen, J., Fossorier, M.P.C.: Density evolution for BP-based decoding algorithms of LDPC codes and their quantized versions. In: Proceedings of IEEE Globecom, Taipei, Taiwan, R.O.C., Nov. 2002, pp. 1026–1030

    Google Scholar 

  20. Tuntoolavest, U., Manthamkarn, V., Maheshwari, A.: Systematic low density parity check codes with hard decision message passing algorithm for non-binary symbols. In: 2020 8th International Electrical Engineering Congress (iEECON), pp. 1–4 (2020). https://doi.org/10.1109/iEECON48109.2020.229467

  21. Cui, H., Lin, J., Wang, Z.: Information storage bit-flipping decoder for LDPC codes. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 11, pp. 2464–2468, Nov. 2020, https://doi.org/10.1109/TVLSI.2020.3009270

  22. Ren, J, Ding, X., Xin, X.-N., Chen, H,-H,: An NB-LDPC decoder algorithm combined using channel information for Storage Application. In: 2020 IEEE 5th International Conference on Integrated Circuits and Microsystems (ICICM), pp. 306–309 (2020). https://doi.org/10.1109/ICICM50929.2020.9292206

  23. Maheshwari, A., Tuntoolavest, U., Fukawa, K.: Implementation of the nonbinary encoder and decoder for systematic low density parity check codes on raspberry-PI boards. In: 11th IEEE Annual Information Technology. Electronics and Mobile Communication Conference (IEMCON), pp. 751–0756 (2020). https://doi.org/10.1109/IEMCON51383.2020.9284943

  24. Zhang, Q., Chen, Y., Li, S., Zeng, X., Parhi, K.K.: IEEE Trans. Circ. Syst. I: Regular Pap. A high-performance stochastic LDPC decoder architecture designed via correlation analysis 67(12), 5429–5442 (2020). https://doi.org/10.1109/TCSI.2020.3003457

    Article  Google Scholar 

  25. Ullah, W., Cheng, L., Takawira, F.: IEEE Access. Predictive syndrome based low complexity joint iterative detection-decoding algorithm for non-binary LDPC codes 9, 33464–33477 (2021). https://doi.org/10.1109/ACCESS.2021.3060806

    Article  Google Scholar 

  26. Deng, K., Cui, H., Lin, J., Wang, Z.: Counter random gradient descent bit-flipping decoder for LDPC codes. In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 55–60 (2021). https://doi.org/10.1109/ISVLSI51109.2021.00021

  27. Chen, J. Iong, Z.: 5G systems with low density parity check based channel coding for enhanced mobile broadband scheme. IRO J. Sustain. Wirel. Syst. 2(1), 42–49 (2020)

    Google Scholar 

  28. Kumar, D., Smys, S.: An efficient packet delivery scheme using trust routing in G. 9959 protocol in a wireless sensor network. J. Ubiquitous Comput. Commun. Technol. (UCCT) 2(03), 118–125 (2020)

    Google Scholar 

  29. Tanner, R.: IEEE Trans. Inf. Theory. A recursive approach to low complexity codes 27(5), 533–547 (1981)

    Google Scholar 

  30. MacKay, D.J.C., Neal, R.M.: Electron. Lett. Near Shannon limit performance of low density parity check codes 32(18), 1645–1646 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allu Swamy Naidu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Naidu, A.S., Tentu, A.N., Singh, A. (2022). Reduced Complexity of LDPC Codes using Hard Decision Decoder. In: Pandian, A.P., Fernando, X., Haoxiang, W. (eds) Computer Networks, Big Data and IoT. Lecture Notes on Data Engineering and Communications Technologies, vol 117. Springer, Singapore. https://doi.org/10.1007/978-981-19-0898-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0898-9_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0897-2

  • Online ISBN: 978-981-19-0898-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics