Skip to main content

Electroflocculation for Wastewater Treatment of Textile Industry: Overview and Process Variables Effects

  • Chapter
  • First Online:
Advanced Oxidation Processes in Dye-Containing Wastewater

Abstract

Wastewater from the textile industry presents several organic and inorganic pollutants, contributing to 54% of the dyes released into the environment in the world. Textile dyes are an environmental and health problem resulting from the advance of industrialization. The consequence is a reduction in the dissolved oxygen level, harming aquatic life. In addition, chemical and biological oxygen demand levels are altered. Regarding the effects on the human organism, azo dyes indicated mutagenic and carcinogenic potential. In this context, chemical, biological, physical, and electrochemical techniques have been studied to treat wastewater from the textile industry. Biological processes generally have long operating times and are ineffective in removing toxic compounds. The chemical coagulation technique produces large amounts of sludge and has slow kinetics. Electroflocculation has been an alternative due to its versatility and high dye removal efficiency. Therefore, this review discussed the effect of variables such as bubble formation, electrode arrangement, distance between electrodes, solution pH, and temperature on the electroflocculation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulhadi BA, Kot P, Hashim KS, Shaw A, Khaddar RA (2019) Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflotation (EC/EF) process. IOP Conf Ser Mater Sci Eng 584:012035. https://doi.org/10.1088/1757-899x/584/1/012035

  2. Akhtar A, Aslam Z, Asghar A, Bello MM, Raman AAA (2020) Electrocoagulation of congo red dye-containing wastewater: optimization of operational parameters and process mechanism. J Environ Chem Eng 8(5):104055. https://doi.org/10.1016/j.jece.2020.104055

  3. Al-Alwani MAM, Ludin NA, Mohamad AB, Kadhum Abd AH, Mukhlus A (2018) Application of dyes extracted from Alternanthera dentata leaves and Musa acuminata bracts as natural sensitizers for dye-sensitized solar cells. Spectrochim Acta Part A Mol Biomol Spectrosc 192:487–498. https://doi.org/10.1016/j.saa.2017.11.018

  4. Alam R (2015) Fundamentals of electro-flotation and electrophoresis and applications in oil sand tailings management. Civil and Environmental Engineering, The University of Western Ontario

    Google Scholar 

  5. Aoudj S, Khelifa A, Drouiche N, Hecini M, Hamitouche H (2010) Electrocoagulation process applied to wastewater containing dyes from textile industry. Chem Eng Process 49(11):1176–1182. https://doi.org/10.1016/j.cep.2010.08.019

    Article  CAS  Google Scholar 

  6. Arora S (2014) Textile dyes: it’s impact on environment and its treatment. J Bioremed Biodegrad 05(03). https://doi.org/10.4172/2155-6199.1000e146

  7. Barrera-Díaz C, Bernal-Martínez LA, Natividad R, Peralta-Hernández JM (2012) Synergy of electrochemical/O3 process with aluminum electrodes in industrial wastewater treatment. Ind Eng Chem Res 51(27):9335–9342. https://doi.org/10.1021/ie3004144

  8. Barrera-Díaz C, Bilyeu B, Roa G, Bernal-Martinez L (2011) Physicochemical aspects of electrocoagulation. Sep Purif Rev 40(1):1–24. https://doi.org/10.1080/15422119.2011.542737

    Article  CAS  Google Scholar 

  9. Cañizares P, Martínez F, Jiménez C, Lobato J, Rodrigo MA (2006) Comparison of the aluminum speciation in chemical and electrochemical dosing processes. Ind Eng Chem Res 45(26):8749–8756. https://doi.org/10.1021/ie060824a

    Article  CAS  Google Scholar 

  10. Cestarolli DT, das Graças de Oliveira A, Guerra EM (2019) Removal of eriochrome black textile dye from aqueous solution by combined electrocoagulation–electroflotation methodology. Appl Water Sci 9(4). https://doi.org/10.1007/s13201-019-0985-x

  11. Chenik H, Elhafdi M, Dassaa A, Essadki AH, Azzi M (2013) Removal of real textile dyes by electrocoagulation/electroflotation in a pilot external-loop airlift reactor. J Water Resour Prot 05(10):1000–1006. https://doi.org/10.4236/jwarp.2013.510104

    Article  CAS  Google Scholar 

  12. Dayi B, Duishemambet Kyzy A, Akdogan HA (2019) Characterization of recuperating talent of white-rot fungi cells to dye-contaminated soil/water. Chin J Chem Eng 27(3):634–638. https://doi.org/10.1016/j.cjche.2018.05.004

    Article  CAS  Google Scholar 

  13. do Vale-Júnior E, da Silva DR, Fajardo AS, Martínez-Huitle CA (2018) Treatment of an azo dye effluent by peroxi-coagulation and its comparison to traditional electrochemical advanced processes. Chemosphere 204:548–555. https://doi.org/10.1016/j.chemosphere.2018.04.007

  14. Donneys-Victoria D, Bermúdez-Rubio D, Torralba-Ramírez B, Marriaga-Cabrales N, Machuca-Martínez F (2019) Removal of indigo carmine dye by electrocoagulation using magnesium anodes with polarity change. Environ Sci Pollut Res 26(7):7164–7176. https://doi.org/10.1007/s11356-019-04160-y

    Article  CAS  Google Scholar 

  15. Dotto J, Fagundes-Klen MR, Veit MT, Palácio SM, Bergamasco R (2019) Performance of different coagulants in the coagulation/flocculation process of textile wastewater. J Clean Prod 208:656–665. https://doi.org/10.1016/j.jclepro.2018.10.112

    Article  CAS  Google Scholar 

  16. Dura A, Breslin CB (2019) Electrocoagulation using stainless steel anodes: simultaneous removal of phosphates, orange II and zinc ions. J Hazard Mater 374:152–158. https://doi.org/10.1016/j.jhazmat.2019.04.032

    Article  CAS  Google Scholar 

  17. El-Ashtoukhy E-SZ, Amin NK (2010) Removal of acid green dye 50 from wastewater by anodic oxidation and electrocoagulation—a comparative study. J Hazard Mater 179(1–3):113–119. https://doi.org/10.1016/j.jhazmat.2010.02.066

    Article  CAS  Google Scholar 

  18. Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Springgay E et al. (2017) Trees, forests and water: cool insights for a hot world. Glob Environ Chang 43:51–61. https://doi.org/10.1016/j.gloenvcha.2017.01.002

  19. Emamjomeh MM, Sivakumar M (2009) Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. J Environ Manag 90(5):1663–1679. https://doi.org/10.1016/j.jenvman.2008.12.011

  20. Essawy AA, Ali AE-H, Abdel-Mottaleb MSA (2008) Application of novel copolymer-TiO2 membranes for some textile dyes adsorptive removal from aqueous solution and photocatalytic decolorization. J Hazard Mater 157(2–3):547–552. https://doi.org/10.1016/j.jhazmat.2008.01.072

    Article  CAS  Google Scholar 

  21. Garud RM, Kore SV, Kore VS, Kulkarni GS (2011) A short review on process and applications of reverse osmosis, vol 1, pp 233–238. http://www.environmentaljournal.org/1-3/ujert-1-3-2.pdf

  22. Ghaly A, Ananthashankar R, Alhattab M, Ramakrishnan V (2014) Production, characterization and treatment of textile effluents: a critical review. Chem Eng Process Technol 5:182. https://doi.org/: https://doi.org/10.4172/2157-7048.1000182

  23. Ghuge SP, Saroha AK (2018) Catalytic ozonation of dye industry effluent using mesoporous bimetallic Ru-Cu/SBA-15 catalyst. Process Saf Environ Prot 118:125–132. https://doi.org/10.1016/j.psep.2018.06.033

    Article  CAS  Google Scholar 

  24. GilPavas E, Dobrosz-Gómez I, Gómez-García M-Á (2019) Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment. Sci Total Environ 651:551–560. https://doi.org/10.1016/j.scitotenv.2018.09.125

    Article  CAS  Google Scholar 

  25. Hoang H-G, Lin C, Tran H-T, Chiang C-F, Bui X-T, Cheruiyot NK, Lee C-W et al (2020) Heavy metal contamination trends in surface water and sediments of a river in a highly-industrialized region. Environ Technol Innov 20:101043. https://doi.org/10.1016/j.eti.2020.101043

  26. Hu C, Deng Z, Xie Y, Chen X, Li F (2015) The risk assessment of sediment heavy metal pollution in the east Dongting lake wetland. J Chem 2015:1–8. https://doi.org/10.1155/2015/835487

    Article  CAS  Google Scholar 

  27. Huda N, Raman AAA, Bello MM, Ramesh S (2017) Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: effects of process parameters and optimization. J Environ Manage 204:75–81. https://doi.org/10.1016/j.jenvman.2017.08.028

    Article  CAS  Google Scholar 

  28. Islam MM, Mahmud K, Faruk O, Billah S (2011) Assessment of environmental impacts for textile dyeing industries in Bangladesh. In: International conference on green technology and environmental conservation (GTEC-2011). https://www.academia.edu/21276822/Assessment_of_environmental_impacts_for_textile_dyeing_industries_in_Bangladesh. Accessed 2 June 2021

  29. Jiménez C, Sáez C, Cañizares P, Rodrigo MA (2016) Optimization of a combined electrocoagulation-electroflotation reactor. Environ Sci Pollut Res 23(10):9700–9711. https://doi.org/10.1007/s11356-016-6199-y

    Article  CAS  Google Scholar 

  30. Jiménez C, Talavera B, Sáez C, Cañizares P, Rodrigo MA (2010) Study of the production of hydrogen bubbles at low current densities for electroflotation processes. J Chem Technol Biotechnol 85(10):1368–1373. https://doi.org/10.1002/jctb.2442

    Article  CAS  Google Scholar 

  31. Kant R (2012) Textile dyeing industry an environmental hazard. Nat Sci 04(01):22–26. https://doi.org/10.4236/ns.2012.41004

    Article  CAS  Google Scholar 

  32. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6(4):4676–4697. https://doi.org/10.1016/j.jece.2018.06.060

    Article  CAS  Google Scholar 

  33. Keyikoglu R, Can OT, Aygun A, Tek A (2019) Comparison of the effects of various supporting electrolytes on the treatment of a dye solution by electrocoagulation process. Colloid Interface Sci Commun 33:100210. https://doi.org/10.1016/j.colcom.2019.100210

  34. Khan S, Malik A (2014) Environmental and health effects of textile industry wastewater. In: Malik A, Grohmann E, Akhtar R (eds) Environmental deteri-oration and human health natural and anthropogenic determinants. Springer, Netherlands, Dordrecht, pp 55–71. Scientific Research Publishing (2014). https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=2113098. Accessed 3 June 2021

  35. Khan NA, Bhadra BN, Jhung SH (2018) Heteropoly acid-loaded ionic liquid@metal-organic frameworks: effective and reusable adsorbents for the desulfurization of a liquid model fuel. Chem Eng J 334:2215–2221. https://doi.org/10.1016/j.cej.2017.11.159

    Article  CAS  Google Scholar 

  36. Khan R, Bhawana P, Fulekar MH (2012) Microbial decolorization and degradation of synthetic dyes: a review. Rev Environ Sci Bio/Technol 12(1):75–97. https://doi.org/10.1007/s11157-012-9287-6

    Article  CAS  Google Scholar 

  37. Khataee AR, Vatanpour V, Amani Ghadim AR (2009) Decolorization of C.I. acid blue 9 solution by UV/nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: a comparative study. J Hazard Mater 161(2–3):1225–1233. https://doi.org/10.1016/j.jhazmat.2008.04.075

  38. Krithika R, Verma R, Shrivastav P (2012) Antioxidative and cytoprotective effects of andrographolide against CCl4-induced hepatotoxicity in HepG2 cells. Hum Exp Toxicol 32(5):530–543. https://doi.org/10.1177/0960327112459530

    Article  CAS  Google Scholar 

  39. Kumar R, Rashid J, Barakat MA (2014) Synthesis and characterization of a starch–AlOOH–FeS2 nanocomposite for the adsorption of congo red dye from aqueous solution. RSC Adv 4(72):38334–38340. https://doi.org/10.1039/c4ra05183a

    Article  CAS  Google Scholar 

  40. Kushwaha JP, Srivastava VC, Mall ID (2010) Organics removal from dairy wastewater by electrochemical treatment and residue disposal. Sep Purif Technol 76(2):198–205. https://doi.org/10.1016/j.seppur.2010.10.008

    Article  CAS  Google Scholar 

  41. Kyzas GZ, Matis KA (2016) Electroflotation process: a review. J Mol Liq 220:657–664. https://doi.org/10.1016/j.molliq.2016.04.128

    Article  CAS  Google Scholar 

  42. Lee S-L, Ho L-N, Ong S-A, Wong Y-S, Voon C-H, Khalik WF, Nordin N et al (2018) Exploring the relationship between molecular structure of dyes and light sources for photodegradation and electricity generation in photocatalytic fuel cell. Chemosphere 209:935–943. https://doi.org/10.1016/j.chemosphere.2018.06.157

  43. Leung HW, Minh TB, Murphy MB, Lam JCW, So MK, Martin M, Richardson BJ et al (2012) Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China. Environ Int 42:1–9. https://doi.org/10.1016/j.envint.2011.03.004

  44. Liu N, Wu Y (2019) Removal of methylene blue by electrocoagulation: a study of the effect of operational parameters and mechanism. Ionics 25(8):3953–3960. https://doi.org/10.1007/s11581-019-02915-8

    Article  CAS  Google Scholar 

  45. Sen SM, Pal D, Kumar Prajapati A (2019) Electrocoagulation treatment of textile dyeing effluent using aluminium electrodes. SSRN Electron J. https://doi.org/10.2139/ssrn.3366890

  46. Manavi N, Kazemi AS, Bonakdarpour B (2017) The development of aerobic granules from conventional activated sludge under anaerobic-aerobic cycles and their adaptation for treatment of dyeing wastewater. Chem Eng J 312:375–384. https://doi.org/10.1016/j.cej.2016.11.155

    Article  CAS  Google Scholar 

  47. Mansour LB, Chalbi S (2006) Removal of oil from oil/water emulsions using electroflotation process. J Appl Electrochem 36(5):577–581. https://doi.org/10.1007/s10800-005-9109-4

    Article  CAS  Google Scholar 

  48. Mansour L, Kesentini I (2008) Treatment of effluents from cardboard industry by coagulation–electroflotation. J Hazard Mater 153(3):1067–1070. https://doi.org/10.1016/j.jhazmat.2007.09.061

    Article  CAS  Google Scholar 

  49. Mariah GK, Pak KS (2020) Removal of brilliant green dye from aqueous solution by electrocoagulation using response surface methodology. Mater Today Proc 20:488–492. https://doi.org/10.1016/j.matpr.2019.09.175

    Article  CAS  Google Scholar 

  50. Mojsov K, Andronikov D, Janevski A, Kuzelov A, Gaber S (2016) The application of enzymes for the removal of dyes from textile effluents. Adv Technol 5(1):81–86. https://doi.org/10.5937/savteh1601081m

    Article  Google Scholar 

  51. Mollah M, Morkovsky P, Gomes J, Kesmez M, Parga J, Cocke D (2004) Fundamentals, present and future perspectives of electrocoagulation. J Hazard Mater 114(1–3):199–210. https://doi.org/10.1016/j.jhazmat.2004.08.009

    Article  CAS  Google Scholar 

  52. Naje A, Chelliapan S, Zakaria Z, Abbas S, Lumpur M (2015) Electrochemical science enhancement of an electrocoagulation process for the treatment of textile wastewater under combined electrical connections using titanium plates. Int J Electrochem Sci 10:4495–4512. http://electrochemsci.org/papers/vol10/100604495.pdf

  53. Nandi BK, Patel S (2017) Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation. Arab J Chem 10:S2961–S2968. https://doi.org/10.1016/j.arabjc.2013.11.032

    Article  CAS  Google Scholar 

  54. Núñez J, Yeber M, Cisternas N, Thibaut R, Medina P, Carrasco C (2019) Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry. J Hazard Mater 371:705–711. https://doi.org/10.1016/j.jhazmat.2019.03.030

    Article  CAS  Google Scholar 

  55. Pajootan E, Arami M, Mahmoodi NM (2012) Binary system dye removal by electrocoagulation from synthetic and real colored wastewaters. J Taiwan Inst Chem Eng 43(2):282–290. https://doi.org/10.1016/j.jtice.2011.10.014

    Article  CAS  Google Scholar 

  56. Palanisamy S, Nachimuthu P, Awasthi MK, Ravindran B, Chang SW, Palanichamy M, Nguyen DD (2020) Application of electrochemical treatment for the removal of triazine dye using aluminium electrodes. J Water Supply Res Technol AQUA 69(4):345–354. https://doi.org/10.2166/aqua.2020.109

    Article  Google Scholar 

  57. Pan Y, Wang Y, Zhou A, Wang A, Wu Z, Lv L, Zhu T et al (2017) Removal of azo dye in an up-flow membrane-less bioelectrochemical system integrated with bio-contact oxidation reactor. Chem Eng J 326:454–461. https://doi.org/10.1016/j.cej.2017.05.146

  58. Parisi ML, Fatarella E, Spinelli D, Pogni R, Basosi R (2015) Environmental impact assessment of an eco-efficient production for coloured textiles. J Clean Prod 108:514–524. https://doi.org/10.1016/j.jclepro.2015.06.032

    Article  CAS  Google Scholar 

  59. Rahmani F, Khalfan M, Maqsood T, Noor MA, Alshanbri NM (2013) How can trust facilitate the implementation of early contractor involvement (ECI)? In: Proceedings procurement systems: selected papers presented at the CIB world building congress construction and society. International Council for Building, Queensland, Australia, pp 74–85

    Google Scholar 

  60. Rajkumar D, Song BJ, Kim JG (2007) Electrochemical degradation of reactive blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dyes Pigm 72(1):1–7. https://doi.org/10.1016/j.dyepig.2005.07.015

    Article  CAS  Google Scholar 

  61. Ralston J, Dukhin SS (1999) The interaction between particles and bubbles. Colloids Surf A 151(1–2):3–14. https://doi.org/10.1016/s0927-7757(98)00642-6

    Article  CAS  Google Scholar 

  62. Rehman F, Sayed M, Khan JA, Shah NS, Khan HM, Dionysiou DD (2018) Oxidative removal of brilliant green by UV/S2O82−, UV/HSO5 and UV/H2O2 processes in aqueous media: a comparative study. J Hazard Mater 357:506–514. https://doi.org/10.1016/j.jhazmat.2018.06.012

  63. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores Technol 77(3):247–255. https://doi.org/10.1016/s0960-8524(00)00080-8

    Article  CAS  Google Scholar 

  64. Robledo-Padilla A, Silva-Núñez A-N, Castillo-Zacarías R-M, Parra-Saldívar R (2020) Evaluation and predictive modeling of removal condition for bioadsorption of indigo blue dye by Spirulina platensis. Microorganisms 8(1):82. https://doi.org/10.3390/microorganisms8010082

  65. Rubach S, Saur IF (1997) Onshore testing of produced water by electroflocculation. Filtr Sep 34(8):877–882. https://doi.org/10.1016/s0015-1882(97)81411-5

    Article  CAS  Google Scholar 

  66. Samsami S, Mohamadizaniani M, Sarrafzadeh M-H, Rene ER, Firoozbahr M (2020) Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. Process Saf Environ Prot 143:138–163. https://doi.org/10.1016/j.psep.2020.05.034

    Article  CAS  Google Scholar 

  67. Sarkar MdSKA, Evans GM, Donne SW (2010) Bubble size measurement in electroflotation. Miner Eng 23(11–13):1058–1065. https://doi.org/10.1016/j.mineng.2010.08.015

    Article  CAS  Google Scholar 

  68. Shammas NK, Pouet M-F, Grasmick A (2010) Wastewater treatment by electrocoagulation-flotation. Flotat Technol 199–220. https://doi.org/10.1007/978-1-60327-133-2_6

  69. Singh G, Reddy AS (2012) Electroflocculation on textile dye wastewater. Thapar.edu. http://hdl.handle.net/10266/1943

  70. Solís M, Solís A, Pérez HI, Manjarrez N, Flores M (2012) Microbial decolouration of azo dyes: a review. Process Biochem 47(12):1723–1748. https://doi.org/10.1016/j.procbio.2012.08.014

    Article  CAS  Google Scholar 

  71. Sun W, Ji B, Khoso SA, Tang H, Liu R, Wang L, Hu Y (2018) An extensive review on restoration technologies for mining tailings. Environ Sci Pollut Res 25(34):33911–33925. https://doi.org/10.1007/s11356-018-3423-y

    Article  CAS  Google Scholar 

  72. Sun W, Ma L, Hu Y, Dong Y, Zhang G (2011) Hydrogen bubble flotation of fine minerals containing calcium. Min Sci Technol (China) 21(4):591–597. https://doi.org/10.1016/j.mstc.2011.01.002

    Article  CAS  Google Scholar 

  73. Tahri N, Masmoudi G, Ellouze E, Jrad A, Drogui P, Ben Amar R (2012) Coupling microfiltration and nanofiltration processes for the treatment at source of dyeing-containing effluent. J Clean Prod 33:226–235. https://doi.org/10.1016/j.jclepro.2012.03.025

    Article  CAS  Google Scholar 

  74. Wei M-C, Wang K-S, Huang C-L, Chiang C-W, Chang T-J, Lee S-S, Chang S-H (2012) Improvement of textile dye removal by electrocoagulation with low-cost steel wool cathode reactor. Chem Eng J 192:37–44. https://doi.org/10.1016/j.cej.2012.03.086

    Article  CAS  Google Scholar 

  75. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Coll Interface Sci 209:172–184. https://doi.org/10.1016/j.cis.2014.04.002

    Article  CAS  Google Scholar 

  76. Yoon R-H (2000) The role of hydrodynamic and surface forces in bubble–particle interaction. Int J Miner Process 58(1–4):129–143. https://doi.org/10.1016/s0301-7516(99)00071-x

    Article  CAS  Google Scholar 

  77. Yuksel E, Eyvaz M, Gurbulak E (2011) Electrochemical treatment of colour index reactive orange 84 and textile wastewater by using stainless steel and iron electrodes. Environ Prog Sustain Energy 32(1):60–68. https://doi.org/10.1002/ep.10601

    Article  CAS  Google Scholar 

  78. Zaghbani N, Hafiane A, Dhahbi M (2007) Separation of methylene blue from aqueous solution by micellar enhanced ultrafiltration. Sep Purif Technol 55(1):117–124. https://doi.org/10.1016/j.seppur.2006.11.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sofia Caroline Moraes Signorelli and Josiel Martins Costa thank the financial support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico, process number 138839/2019-0 and 150172-2020-6, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Caroline Moraes Signorelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Signorelli, S.C.M., Costa, J.M., de Almeida Neto, A.F. (2022). Electroflocculation for Wastewater Treatment of Textile Industry: Overview and Process Variables Effects. In: Muthu, S.S., Khadir, A. (eds) Advanced Oxidation Processes in Dye-Containing Wastewater. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-0882-8_11

Download citation

Publish with us

Policies and ethics