Skip to main content

Nanoceramic Based Composites for Removal of Dyes from Aqueous Stream

  • Chapter
  • First Online:
Advanced Oxidation Processes in Dye-Containing Wastewater

Abstract

Water is an essential necessity for all living beings, but the world is suffering from a major crisis of clean and safe drinking water. Water pollution has become one of the most aggravated problems throughout the world threatening the sustainability of human race and other life forms due to the rapid pace of civilization and industrialization. A long history exists of discharge of hazardous dyes into the water bodies by selfish human activities since the Industrial Revolution, but no effort has been completely successful in curbing the activities that result in the degradation of our environment. These pollutants are harmful, carcinogenic and have adverse health effects to all forms of life. Thus, remarkable efforts have been geared up to obtain clean water by exploiting science and technology. Among the potential methods for the treatment of wastewater, adsorption by solid materials is worth mentionable. Its simplicity in operation and satisfactory efficiency in the elimination of contaminants make it a good candidate for adsorption. Ceramic based nanomaterials have attracted scientists and have been widely utilized in remediating dye laden waste water because of their sustainable nature, magnetically recyclability, stability and maximum pollutant binding capacities. This chapter provides an understanding of the different treatment methods and outlines the possible utility of nanoceramic based composite materials in the treatment of waste water contaminated with dyes. Summary of the global scenario and the recent developments of nanoceramics as adsorbents have been reviewed. It is expected that this book chapter provides a scope to the future researchers and opens new scientific avenues in the areas of dye removal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad R, Kumar R (2010) Conducting polyaniline/iron oxide composite: a novel adsorbent for the removal of amido black 10B. J Chem Eng Data 55:3489–3493. https://doi.org/10.1021/je1001686

    Article  CAS  Google Scholar 

  2. Akarslan F, Demiralay H (2015) Effects of textile materials harmful to human health. Acta Phys Pol A 128:407–408. https://doi.org/10.12693/APhysPolA.128.B-407

  3. Anirudhan TS, Ramachandran M (2015) Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): kinetic and competitive adsorption isotherm. Process Saf Environ Prot 95:215–225. https://doi.org/10.1016/j.psep.2015.03.003

    Article  CAS  Google Scholar 

  4. Aoudj S, Khelifa A, Drouiche N, Hecini M, Hamitouche H (2010) Electrocoagulation process applied to wastewater containing dyes from textile industry. Chem Eng Process 49:1176–1182. https://doi.org/10.1016/j.cep.2010.08.019

    Article  CAS  Google Scholar 

  5. Cao M, Lin J, Lu J, You Y, Liu T, Cao R (2011) Development of a polyoxometallate-based photocatalyst assembled with cucurbit[6] uril via hydrogen bonds for azo dyes degradation. J Hazard Mater 186:948–951. https://doi.org/10.1016/j.jhazmat.2010.10.119

    Article  CAS  Google Scholar 

  6. Chatterjee S, Gupta A, Mohanta T, Mitra R, Samanta D, Mandal AB, Majumder M, Rawat R, Singha NR (2018) Scalable synthesis of hide substance–chitosan–hydroxyapatite: novel biocomposite from industrial wastes and its efficiency in dye removal. ACS Omega 3:11486–11496. https://doi.org/10.1021/acsomega.8b00650

    Article  CAS  Google Scholar 

  7. Christie R (2007) Environmental aspects of textile dyeing. Wood Head Publishing, Cambridge

    Google Scholar 

  8. Dawood S, Sen TK (2013) Review on dye removal from its aqueous solution into alternative cost effective and non-conventional adsorbents. J Chem Process Eng 1:1–7. https://doi.org/10.17303/JCE.2014.105

  9. De Gisi S, Lofrano G, Grassi M, Notarnicola M (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain Mater Technol 9:10–40. https://doi.org/10.1016/j.susmat.2016.06.002

    Article  CAS  Google Scholar 

  10. Fan J, Hu X, Xie Z, Zhang K, Wang J (2012) Photocatalytic degradation of azo dye by novel Bi-based photocatalyst Bi4TaO8I under visible-light irradiation. Chem Eng J 179:44–51. https://doi.org/10.1016/j.cej.2011.10.029

    Article  CAS  Google Scholar 

  11. Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971. https://doi.org/10.1016/j.envint.2004.02.001

    Article  CAS  Google Scholar 

  12. Foroutan R, Peighambardoust SJ, Aghdasinia H, Mohammadi R, Ramavandi B (2020) Modification of bio-hydroxyapatite generated from waste poultry bone with MgO for purifying methyl violet-laden liquids. Environ Sci Pollut Res 27:44218–44229. https://doi.org/10.1007/s11356-020-10330-0

    Article  CAS  Google Scholar 

  13. Gahr F, Hermanutz F, Opperman W (1994) Ozonation – an important technique to comply with new German laws for textile wastewater treatment. Water Sci Technol 30:255–263. https://doi.org/10.2166/wst.1994.0115

    Article  Google Scholar 

  14. Garg VK, Kumar R, Gupta R (2004) Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria. Dyes Pigm 62:1–10. https://doi.org/10.1016/j.dyepig.2003.10.016

    Article  CAS  Google Scholar 

  15. Geetha P, Latha MS, Mathew K (2015) Biosorption of malachite green dye from aqueous solution by calcium alginate nanoparticles: equilibrium study. J Mol Liq 212:723–730. https://doi.org/10.1016/j.molliq.2015.10.035

    Article  CAS  Google Scholar 

  16. Ghanavati Nasab S, Semnani A, Teimouri A, Kahkesh H, Momeni Isfahani T, Habibollahi S (2018) Removal of congo red from aqueous solution by hydroxyapatite nanoparticles loaded on zein as an efficient and green adsorbent: response surface methodology and artificial neural network-genetic algorithm. J Polym Environ 26:3677–3697. https://doi.org/10.1007/s10924-018-1246-z

    Article  CAS  Google Scholar 

  17. Hameed BH, Lee TW (2009) Degradation of malachite green in aqueous solution by Fenton process. J Hazard Mater 164:468–472. https://doi.org/10.1016/j.jhazmat.2008.08.018

    Article  CAS  Google Scholar 

  18. Hashem A, Akasha RA, Ghith A, Hussein DA (2007) Adsorbent based on agricultural wastes for heavy Mmetal and dye removal: a review. Energy Educ Sci Technol 19:69–86

    CAS  Google Scholar 

  19. Hassan MA, Mohammad A, Salaheldin TA, El Anadouli BE (2018) A promising hydroxyapatite/graphene hybrid nanocomposite for methylene blue dye’s removal in wastewater treatment. Int J Electrochem Sci 13:8222–8240

    Article  CAS  Google Scholar 

  20. He F, Zhao D, Liu J, Roberts CB (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46:29–34. https://doi.org/10.1021/ie0610896

    Article  CAS  Google Scholar 

  21. Hosseinzadeh H, Ramin S (2018) Fabrication of starch-graft-poly(acrylamide)/graphene oxide/hydroxyapatite nanocomposite hydrogel adsorbent for removal of malachite green dye from aqueous solution. Int J Biol Macromol 106:101–115. https://doi.org/10.1016/j.ijbiomac.2017.07.182

    Article  CAS  Google Scholar 

  22. Hou H, Zhou R, Wu P, Wu L (2012) Removal of congo red dye from aqueous solution with hydroxyapatite/chitosan composite. Chem Eng J 211–212:336–342. https://doi.org/10.1016/j.cej.2012.09.100

    Article  CAS  Google Scholar 

  23. Janaki V, Vijayaraghavan K, Oh BT, Lee KJ, Muthuchelian K, Ramasamy AK, Kamala-Kannan S (2012) Starch/polyaniline nanocomposite for enhanced removal of reactive dyes from synthetic effluent. Carbohydr Polym 90:1437–1444. https://doi.org/10.1016/j.carbpol.2012.07.012

    Article  CAS  Google Scholar 

  24. Jedynak K, Wideł D, Rędzia N (2019) Removal of Rhodamine B (a basic dye) and acid yellow 17 (an acidic dye) from aqueous solutions by ordered mesoporous carbon and commercial activated carbon. Colloids Interfaces 3:30. https://doi.org/10.3390/colloids3010030

    Article  CAS  Google Scholar 

  25. Kausar A, Iqbal M, Javed A, Aftab K, Nazli ZH, Bhatti HN, Nouren S (2018) Dyes adsorption using clay and modified clay: a review. J Mol Liq 256:395–407. https://doi.org/10.1016/j.molliq.2018.02.034

    Article  CAS  Google Scholar 

  26. Li L, Iqbal J, Zhu Y, Zhang P, Chen W, Bhatnagar A, Du Y (2018) Chitosan/Ag-hydroxyapatite nanocomposite beads as a potential adsorbent for the efficient removal of toxic aquatic pollutants. Int J Biol Macromol 120:1752–1759. https://doi.org/10.1016/j.ijbiomac.2018.09.190

    Article  CAS  Google Scholar 

  27. Li Y, Zhang Y, Zhang Y, Wang G, Li S, Han R, Wei W (2018) Reed biochar supported hydroxyapatite nanocomposite: characterization and reactivity for methylene blue removal from aqueous media. J Mol Liq 263:53–63. https://doi.org/10.1016/j.molliq.2018.04.132

    Article  CAS  Google Scholar 

  28. Lian L, Guo L, Guo C (2009) Adsorption of congo red from aqueous solutions onto Ca-bentonite. J Hazard Mater 161:126–131. https://doi.org/10.1016/j.jhazmat.2008.03.063

    Article  CAS  Google Scholar 

  29. Lin JX, Zhan SL, Fang MH, Qian XQ, Yang H (2008) Adsorption of basic dye from aqueous solution onto fly ash. J Environ Manage 87:193–200. https://doi.org/10.1016/j.jenvman.2007.01.001

    Article  CAS  Google Scholar 

  30. Liu W, Tian S, Zhao X, Xie W, Gong Y, Zhao D (2015) Application of stabilized nanoparticles for in situ remediation of metal-contaminated soil and groundwater: a critical review. Curr Pollut Rep 1:280–291. https://doi.org/10.1007/s40726-015-0017-x

    Article  Google Scholar 

  31. Manatunga DC, de Silva RM, de Silva KMN, de Silva N, Premalal EVA (2018) Metal and polymer-mediated synthesis of porous crystalline hydroxyapatite nanocomposites for environmental remediation. R Soc Open Sci 171557:1–15. https://doi.org/10.1098/rsos.171557

    Article  CAS  Google Scholar 

  32. Mathur N, Bakre P, Bhatnagar P (2006) Assessing mutagenicity of textile dyes from Pali (Rajasthan) using AMES bioassay. Appl Ecol Environ Res 4:111–118

    Article  Google Scholar 

  33. Ministry of Textile Govt of India (2018) Annual Report 2017–18

    Google Scholar 

  34. Mishra G, Tripathy M (1993) A critical review of the treatments for decolourization of textile effluent. Colourage 40:35–38

    CAS  Google Scholar 

  35. Nasser MM, El-Geundi MS (1991) Comparative cost of colour removal from textile effluents using natural adsorbents. J Chem Technol Biotechnol 50:257–264. https://doi.org/10.1002/jctb.280500210

    Article  Google Scholar 

  36. Nguyen VC, Pho QH (2014) Preparation of Chitosan coated magnetic hydroxyapatite nanoparticles and application for adsorption of reactive blue 19 and Ni2+ ions. Sci World J 2014:1–9. https://doi.org/10.1155/2014/273082

    Article  CAS  Google Scholar 

  37. Nigam P, Armour G, Banat IM, Singh D, Marchant R (2000) Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresour Technol 72:219–226. https://doi.org/10.1016/S0960-8524(99)00123-6

    Article  CAS  Google Scholar 

  38. Nusrat T, Siddiqui SI, Rathi G, Chaudhry SA, Inamuddin AAM (2020) Nano-engineered adsorbent for the removal of dyes from water: a review. Curr Anal Chem 16:14–40. https://doi.org/10.2174/1573411015666190117124344

    Article  CAS  Google Scholar 

  39. Oladipo AA, Gazi M (2015) Uptake of Ni2+ and rhodamine B by nano-hydroxyapatite/alginate composite beads: batch and continuous-flow systems. Toxicol Environ Chem 98:189–203. https://doi.org/10.1080/02772248.2015.1115506

    Article  CAS  Google Scholar 

  40. Ozdemir O, Turan M, Turan AZ, Faki A, Engin AB (2009) Feasibility analysis of color removal from textile dyeing wastewater in a fixed-bed column system by surfactant-modified zeolite (SMZ). J Hazard Mater 166:647–654. https://doi.org/10.1016/j.jhazmat.2008.11.123

    Article  CAS  Google Scholar 

  41. Peralta-Zamora P, Kunz A, Games de Moraes S, Pelegrini R, de Campos MP, Reyes J, Duran N (1999) Degradation of reactive dyes I. A comparative study of ozonation, enzymatic and photochemical processes. Chemosphere 38:835–852. https://doi.org/10.1016/S0045-6535(98)00227-6

    Article  CAS  Google Scholar 

  42. Pi Y, Li X, Xia Q, Wu J, Li Y, Xiao J, Li Z (2018) Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs). Chem Eng J 337:351–371. https://doi.org/10.1016/j.cej.2017.12.092

    Article  CAS  Google Scholar 

  43. Poots VJP, McKay G, Healy JJ (1976) The removal of acid dye from effluent using natural adsorbents. I. Peat. Water Res 10:1061–1066

    Article  CAS  Google Scholar 

  44. Prabhu SM, Khan A, Hasmath Farzana M, Hwang GC, Lee W, Lee G (2018) Synthesis and characterization of graphene oxide-doped nano-hydroxyapatite and its adsorption performance of toxic diazo dyes from aqueous solution. J Mol Liq 269:746–754. https://doi.org/10.1016/j.molliq.2018.08.044

    Article  CAS  Google Scholar 

  45. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255. https://doi.org/10.1016/s0960-8524(00)00080-8

    Article  CAS  Google Scholar 

  46. Saber-Samandari S, Saber-Samandari S, Nezafati N, Yahya K (2014) Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads. J Environ Manage 146:481–490. https://doi.org/10.1016/j.jenvman.2014.08.010

    Article  CAS  Google Scholar 

  47. Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280:1–13. https://doi.org/10.1016/j.desal.2011.07.019

    Article  CAS  Google Scholar 

  48. Shertate RS, Thorat P (2015) Biotransformation of textile dyes: a bioremedial aspect of marine environment. Am J Environ Sci 10:489–499. https://doi.org/10.3844/ajessp.2014.489.499

    Article  CAS  Google Scholar 

  49. Shindy HA (2017) Problems and solutions in colors, dyes and pigments chemistry: a review. Chem Int 3:97–100

    Google Scholar 

  50. Siddiqui SI, Rathi G, Chaudhry SA (2018) Acid washed black cumin seed powder preparation for adsorption of methylene blue dye from aqueous solution: thermodynamic, kinetic and isotherm studies. J Mol Liq 264:275–284. https://doi.org/10.1016/j.molliq.2018.05.065

    Article  CAS  Google Scholar 

  51. Singh A, Dutta DP, Ramkumar J, Bhattacharya K, Tyagi AK, Fulekar MH (2013) Serendipitous discovery of super adsorbent properties of sonochemically synthesized nano BaWO4. RSC Adv 3:22580–22590. https://doi.org/10.1039/C3RA44350G

    Article  CAS  Google Scholar 

  52. Slokar YM, Le Marechal AM (1998) Methods of decoloration of textile wastewaters. Dyes Pigm 37:335–356. https://doi.org/10.1016/S0143-7208(97)00075-2

    Article  CAS  Google Scholar 

  53. Srilakshmi C, Saraf R (2016) Ag-doped hydroxyapatite as efficient adsorbent for removal of congo red dye from aqueous solution: synthesis, kinetic and equilibrium adsorption isotherm analysis. Micropor Mesopor Mat 219:134–144. https://doi.org/10.1016/j.micromeso.2015.08.003

    Article  CAS  Google Scholar 

  54. Su C, Wang Y (2011) Influence factors and kinetics on crystal violet degradation by Fenton and optimization parameters using response surface methodology. In: International conference on environmental and agricultural engineering, vol 15, pp 76–80

    Google Scholar 

  55. Thao NT, Nga HTP, Vo NQ, Nguyen HDK (2017) Advanced oxidation of Rhodamine-B with hydrogen peroxide over Zn-Cr layered double hydroxide catalysts. J Sci-Adv Mater Dev 2:317–325. https://doi.org/10.1016/j.jsamd.2017.07.005

    Article  Google Scholar 

  56. Toor M, Jin B, Dai S, Vimonses V (2015) Activating natural bentonite as a cost-effective adsorbent for removal of congo-red in wastewater. J Ind Eng Chem 21:653–661. https://doi.org/10.1016/j.jiec.2014.03.033

    Article  CAS  Google Scholar 

  57. Wang Y, Hu L, Zhang G, Yan T, Yan L, Wei Q, Du B (2017) Removal of Pb(II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes. J Colloid Interface Sci 494:380–388. https://doi.org/10.1016/j.jcis.2017.01.105

    Article  CAS  Google Scholar 

  58. Wawrzyniak B, Morawski AW (2006) Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO2 photocatalyst containing nitrogen. Appl Catal B 62:150–158. https://doi.org/10.1016/j.apcatb.2005.07.008

    Article  CAS  Google Scholar 

  59. Wei W, Han X, Zhang M, Zhang Y, Zhang Y, Zheng C (2020) Macromolecular humic acid modified nano-hydroxyapatite for simultaneous removal of Cu (II) and methylene blue from aqueous solution: experimental design and adsorption study. Int J Biol Macromol 150:849–860. https://doi.org/10.1016/j.ijbiomac.2020.02.137

    Article  CAS  Google Scholar 

  60. Willmott N, Guthrie J, Nelson G (2008) The biotechnology approach to colour removal from textile effluent. J Soc Dye Colour 114:38–41. https://doi.org/10.1111/j.1478-4408.1998.tb01943.x

    Article  Google Scholar 

  61. Wu FC, Tseng RL, Juang RS (2000) Comparative adsorption of metal and dye on flake and bead-types of chitosans prepared from fishery wastes. J Hazard Mater 73:63–75. https://doi.org/10.1016/s0304-3894(99)00168-5

    Article  CAS  Google Scholar 

  62. Wu Y, Chen L, Long X, Zhang X, Pan B, Qian J (2018) Multi-functional magnetic water purifier for disinfection and removal of dyes and metal ions with superior reusability. J Hazard Mater 347:160–167. https://doi.org/10.1016/j.jhazmat.2017.12.037

    Article  CAS  Google Scholar 

  63. Xu H, Zhang Y, Jiang Q, Reddy N, Yang Y (2013) Biodegradable hollow zein nanoparticles for removal of reactive dyes from wastewater. J Environ Manag 125:33–40. https://doi.org/10.1016/j.jenvman.2013.03.050

    Article  CAS  Google Scholar 

  64. Xu Y, Lebrun RE (1999) Treatment of textile dye plant effluent by nanofiltration membrane. Separ Sci Technol 34:2501–2519. https://doi.org/10.1081/SS-100100787

    Article  CAS  Google Scholar 

  65. Young L, Yu J (1997) Ligninase-catalysed decolorization of synthetic dyes. Water Res 31:1187–1193. https://doi.org/10.1016/S0043-1354(96)00380-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Ahmaruzzaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, S., Ahmaruzzaman, M. (2022). Nanoceramic Based Composites for Removal of Dyes from Aqueous Stream. In: Muthu, S.S., Khadir, A. (eds) Advanced Oxidation Processes in Dye-Containing Wastewater. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-0882-8_10

Download citation

Publish with us

Policies and ethics