Skip to main content

Natural Toxicants Originating from Food/Diet

  • Chapter
  • First Online:
Nutritional Toxicology

Abstract

Even though many of the toxic chemicals found in our environment that concern the general public are man-made, there are also hundreds of naturally occurring poisons from animal, plant, fungal, and microbial sources. In fact, the most toxic chemicals known to man are natural poisons, and it would be unreasonable to suggest, as some of the advertising claims do, that natural constituents of food occur just like they do with synthetic additives.

It has been known for centuries that some natural toxic substances are harmful and are sometimes used for murder, suicide, or even misguided medical treatment. Although natural poisons are relatively rare among accidental poisoning cases compared with poisoning by drug overdose, accidental poisoning by natural substances still happens occasionally. Toxins of natural origin have diverse structures and mechanisms of action, making it impossible to discuss and cover all of them in this chapter individually because of their many categories. In light of this, we will not examine every toxic substance derived from animals, plants, fungi, or microorganisms, but rather just a few interesting and important examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostroff S. Yersinia as an emerging infection: epidemiologic aspects of Yersiniosis. Contrib Microbiol Immunol. 1995;13:5–10.

    CAS  PubMed  Google Scholar 

  2. Brunelle T, Dumas P, Souty F. The impact of globalization on food and agriculture: the case of the diet convergence. J Environ Dev. 2014;23(1):41–65. https://doi.org/10.1177/1070496513516467.

    Article  Google Scholar 

  3. SADAOC. Food hygiene and the problem of street food in West Africa. Six monthly bulletins on food security policies and strategies in West Africa. 2002;6(1). http://www.sadaoc.bf/anglais/sadaocinfo6.htm. Accessed 15 Apr 2020.

  4. FAO. The future of food and agriculture: trends and challenges. Rome: FAO; 2017. http://www.fao.org/3/a-i6583e.pdf. Accessed 13 Apr 2020.

    Google Scholar 

  5. WHO. Food borne disease: a focus for health education. Geneva: WHO; 2000. https://apps.who.int/iris/bitstream/handle/10665/42428/9241561963.pdf. Accessed 10 Apr 2020.

    Google Scholar 

  6. Bintsis T. Foodborne pathogens. AIMS Microbiol. 2017;3(3):529–63. https://doi.org/10.3934/microbiol.2017.3.529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bacon RT, Sofos JN. Characteristics of biological hazards in foods. In: Schmidt RH, Rodrick GE, editors. Food safety handbook. New Jersey: Wiley; 2003. p. 157–95.

    Google Scholar 

  8. Celandroni F, Vecchione A, Cara A, et al. Identification of Bacillus species: implication on the quality of probiotic formulations. PLoS One. 2019;14(5):e0217021. https://doi.org/10.1371/journal.pone.0217021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hauge S. Food poisoning caused by aerobic spore-forming bacilli. J Appl Bacteriol. 1955;I8:591.

    Article  Google Scholar 

  10. Ormay L, Novotny T. The significance of B. cereus food poisoning in Hungary. In: Kampelmacher EH, Ingram M, Mossel DAA, editors. The microbiology of dried foods. Proceedings of the sixth international symposium on food microbiology, Bilthoven, The Netherlands, Jone 1988. Haarlem: Grafische Industrie; 1969. p. 279.

    Google Scholar 

  11. Artenstein AW. Biological attack. Ciottone’s Disaster Med. 2016:480–8. https://doi.org/10.1016/B978-0-323-28665-7.00079-0 Accessed 11 Apr 2020.

  12. McDowell RH, Sands EM, Friedman H. Bacillus cereus. [Updated 2019 Jul 5]. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2020. https://www.ncbi.nlm.nih.gov/books/NBK459121/. Accessed 8 Apr 2020.

  13. Bell JH, Fee E, Brown TM. Anthrax and the wool trade. 1902. Am J Public Health. 2002;92(5):754–7. https://doi.org/10.2105/ajph.92.5.754.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Espelund M, Klaveness D. Botulism outbreaks in natural environments—an update. Front Microbiol. 2014;5:287. https://doi.org/10.3389/fmicb.2014.00287.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sobel J, Tucker N, Sulka A, et al. Foodborne botulism in the United States, 1990-2000. Emerg Infect Dis. 2004;10(9):1606–11. https://doi.org/10.3201/eid1009.030745.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Barber MA. Milk poisoning due to a type of Staphylococcus albus occurring in the udder of a healthy cow. Philipp J Sci. 1914;9:515–9.

    Google Scholar 

  17. Dack GM, Cary WE, Woolpert O, et al. An outbreak of food poisoning proved to be due to a yellow hemolytic Staphylococcus. J Prev Med. 1930;4:167–75.

    Google Scholar 

  18. Paparella A, Serio A, Rossi C, et al. Food-borne transmission of staphylococci. In: Pet-to-man travelling staphylococci: a world in progress. 1st ed. London: Elsevier; 2018. p. 71–94.

    Google Scholar 

  19. Scallan E, Hoekstra RM, Angulo FJ, et al. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis. 2011;17(1):7–15.

    Article  Google Scholar 

  20. EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 2017;15:5077.

    Google Scholar 

  21. Wang W, Baloch Z, Jiang T, et al. Enterotoxigenicity and antimicrobial resistance of Staphylococcus aureus isolated from retail food in China. Front Microbiol. 2017;8:2256.

    Article  Google Scholar 

  22. GBD 2015 Mortality and causes of death, collaborators. Global, regional and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1459–544. https://doi.org/10.1016/s0140-6736(16)31012-1.

    Article  Google Scholar 

  23. Williams LP Jr, Helsdon HL. Pet turtles as a cause of human salmonellosis. JAMA. 1965;192:347–51.

    Article  Google Scholar 

  24. Crump JA. Progress in typhoid fever epidemiology. Clin Infect Dis. 2019;68(Suppl 1):S4–9. https://doi.org/10.1093/cid/ciy846.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Soofi SB, Habib MA, Seidlein LV, et al. A comparison of disease caused by Shigella and Campylobacter species: 24 months community-based surveillance in 4 slums of Karachi, Pakistan. J Infect Public Health. 2011;4:12–21.

    Article  Google Scholar 

  26. Vogt RL, Sours HE, Barrett T, et al. Campylobacter enteritis associated with contaminated water. Ann Intern Med. 1982;96(3):292–6. https://doi.org/10.7326/0003-4819-96-3-292.

    Article  CAS  PubMed  Google Scholar 

  27. Lund BM, Peck MW. A possible route for foodborne transmission of Clostridium difficile? Foodborne Pathog Dis. 2015;12(3):177–82. https://doi.org/10.1089/fpd.2014.1842.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Centers for Disease Control and Prevention (CDC). Clostridium perfringens. Centers for Disease Control and Prevention. 2018. https://www.cdc.gov/foodsafety/diseases/clostridium-perfringens.html. Accessed 21 Apr 2020.

  29. Leung JM, Gallant CV. Infections due to Escherichia and Shigella. In: Reference module in biomedical sciences. Amsterdam: Elsevier; 2014. https://doi.org/10.1016/B978-0-12-801238-3.05090-X.

    Chapter  Google Scholar 

  30. Taneja N, Mewara A. Shigellosis: epidemiology in India. Indian J Med Res. 2016;143(5):565–76. https://doi.org/10.4103/0971-5916.187104.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mitscherlich E, Marth EH. Microbial survival in the environment: bacteria and rickettsiae important in human and animal health. Berlin: Springer-Verlag; 1984.

    Book  Google Scholar 

  32. Ameer MA, Wasey A, Salen P. Escherichia coli (E coli 0157 H7). [Updated 2020 Mar 17]. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2020. https://www.ncbi.nlm.nih.gov/books/NBK507845/. Accessed 21 Apr 2020.

  33. Ochoa TJ, Contreras CA. Enteropathogenic Escherichia coli infection in children. Curr Opin Infect Dis. 2011;24(5):478–83. https://doi.org/10.1097/QCO.0b013e32834a8b8b.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ekici G, Dümen E. Escherichia coli and food safety. In: The universe of Escherichia coli. London: IntechOpen; 2019. https://doi.org/10.5772/intechopen.82375.

    Chapter  Google Scholar 

  35. Konowalchuk J, Speirs JI, Stavric S. Vero response to a cytotoxin of Escherichia coli. Infect Immun. 1977;18:775–9.

    Article  CAS  Google Scholar 

  36. Harkins VJ, McAllister DA, Reynolds BC. Shiga-toxin E. coli hemolytic uremic syndrome: review of management and long-term outcome. Curr Pediatr Rep. 2020;8:16–25. https://doi.org/10.1007/s40124-020-00208-7.

    Article  Google Scholar 

  37. Islam MA, Mondol AS, Azmi IJ, et al. Occurrence and characterization of Shiga toxin–producing Escherichia coli in raw meat, raw milk, and street vended juices in Bangladesh. Foodborne Pathog Dis. 2010;7:1381–5.

    Article  Google Scholar 

  38. Vivant AL, Garmyn D, Piveteau P. Listeria monocytogenes, a down-to-earth pathogen. Front Cell Infect Microbiol. 2013;3:87. https://doi.org/10.3389/fcimb.2013.00087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ivanek R, Gröhn YT, Wiedmann M. Listeria monocytogenes in multiple habitats and host populations: review of available data for mathematical modeling. Foodborne Pathog Dis. 2006;3(4):319–0336. https://doi.org/10.1089/fpd.2006.3.319.

    Article  CAS  PubMed  Google Scholar 

  40. Kokashvili T, Whitehouse CA, Tskhvediani A, et al. Occurrence and diversity of clinically important Vibrio species in the aquatic environment of Georgia. Front Public Health. 2015;3:232. https://doi.org/10.3389/fpubh.2015.00232.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ojeda Rodriguez JA, Kahwaji CI. Vibrio Cholerae. [Updated 2020 Feb 5]. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2020. https://www.ncbi.nlm.nih.gov/books/NBK526099/. Accessed 23 Apr 2020.

  42. Sabina Y, Rahman A, Ray RC. Yersinia enterocolitica: mode of transmission, molecular insights of virulence, and pathogenesis of infection. J Pathog. 2011;429069:1–10. https://doi.org/10.4061/2011/429069.

    Article  Google Scholar 

  43. Zain ME. Impact of mycotoxins on humans and animals. J Saudi Chem Soc. 2011;15(2):129–44. https://doi.org/10.1016/j.jscs.2010.06.006.

    Article  CAS  Google Scholar 

  44. Marcellino OSBSN, Benson DR. The good, the bad, and the ugly: tales of mold-ripened cheese. Microbiol Spectr. 2013;1(1). https://doi.org/10.1128/microbiolspec.CM-0005-12.

  45. Eskola M, Kos G, Elliott CT, et al. Worldwide contamination of food-crops with mycotoxins: validity of the widely cited ‘FAO estimate’ of 25%. Crit Rev Food Sci Nutr. 2019;60(16):2773–89. https://doi.org/10.1080/10408398.2019.1658570.

    Article  CAS  PubMed  Google Scholar 

  46. Squire RA. Ranking animal carcinogens: a proposed regulatory approach. Science. 1981;214:877–80.

    Article  CAS  Google Scholar 

  47. European Food Safety Authority (EFSA). Opinion of the scientific panel on contaminants in the food chain [CONTAM] related to the potential increase of consumer health risk by a possible increase of the existing maximum levels for aflatoxins in almonds, hazelnuts and pistachios and derived products. EFSA J. 2007;5(3):446–53. https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2007.446. Accessed 15 Apr 2020.

  48. Pfohl-Leszkowicz A, Petkova-Bocharova T, Chernozemsky IN, et al. Balkan endemic nephropathy and associated urinary tract tumours: a review on aetiological causes and the potential role of mycotoxins. Food Addit Contam. 2002;19(3):282–302. https://doi.org/10.1080/02652030110079815.

    Article  CAS  PubMed  Google Scholar 

  49. Anfossi L, Giovannoli C, Baggiani C. Mycotoxin detection. Curr Opin Biotechnol. 2016;37:120–6.

    Article  CAS  Google Scholar 

  50. Hocking AD. Common mycotoxigenic species of Fusarium. In: Semple RL, Frio AS, Hicks PA, Lozare JV, editors. Mycotoxin prevention and control in food grains. Regnet/AGPP; 1991.

    Google Scholar 

  51. European Food Safety Authority (EFSA). Scientific opinion on the risks for public health related to the presence of zearalenone in food. EFSA J. 2011;9:2197. https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2011.2197.

    Article  Google Scholar 

  52. Haschek WM, Voss KA. Chapter 39—Mycotoxins. In: Haschek WM, Rousseaux CG, Wallig MA, editors. Haschek and Rousseaux’s handbook of toxicologic pathology. 3rd ed. Boston: Academic Press; 2013. p. 1187–258.

    Chapter  Google Scholar 

  53. Sydenham EW, Shephard GS, Thiel PG, et al. Fumonisin contamination of commercial corn-based human foodstuffs. 1. Agric Food Chem. 1991;39:2014–8.

    Article  CAS  Google Scholar 

  54. Santini A, Meca G, Uhlig S, et al. Fusaproliferin, beauvericin and enniatin: occurrence in food—a review. World Mycotoxin J. 2012;5:71–81.

    Article  CAS  Google Scholar 

  55. Babaali E, Abbasi A, Sarlak Z. Risks of Patulin and its removal procedures: a review. Int J Nutr Sci. 2017;2(1):10–5.

    CAS  Google Scholar 

  56. Burnside JE, Sipple WL, Forgacs J, et al. A disease of swine and cattle caused by eating moldy corn. II. Experimental production with true cultures of molds. Am J Vet Res. 1957;69:817–24.

    Google Scholar 

  57. Haarmann T, Rolke Y, Giesbert S, et al. Ergot: from witchcraft to biotechnology. Mol Plant Pathol. 2009;10(4):563–77. https://doi.org/10.1111/j.1364-3703.2009.00548.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Urga K, Debella A, W’Medihn Y, et al. Laboratory studies on the outbreak of gangrenous ergotism associated with consumption of contaminated barley in Arsi, Ethiopia. J Health Dev. 2002;16:317–23.

    Google Scholar 

  59. Wink M. Plant secondary metabolites modulate insect behavior-steps toward addiction. Front Physiol. 2018;9:364. https://doi.org/10.3389/fphys.2018.00364.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sinclair ARE, Leakey MD, Norton-Grieffiths M. Migration and hominid bipedalism. Nature. 1986;324:307–8.

    Article  CAS  Google Scholar 

  61. Ishida M, Hara M, Fukino N, et al. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed Sci. 2014;64(1):48–59. https://doi.org/10.1270/jsbbs.64.48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. World Health Organization. Cyanogenic glycosides. Toxicological evaluation of certain food additives and naturally occurring toxicants WHO food additive series 30. Geneva. 1993. http://wwwinchemorg/documents/jecfa/jecmono/v30je18htm. Accessed 20 Apr 2020.

  63. FAO. Why cassava? http://www.fao.org/ag/AGP/agpc/gcds/index_en.html. Accessed 19 Apr 2020.

  64. Kwok J. Cyanide poisoning and cassava. Food safety focus (19th issue February, 2008). Incident focus 2008. http://wwwcfsgovhk/english/multimedia. Accessed 13 Apr 2020.

  65. Güçlü-Üstündağ Ö, Mazza G. Saponins: properties, applications and processing. Crit Rev Food Sci Nutr. 2007;47:231–58. https://doi.org/10.1080/10408390600698197.

    Article  CAS  PubMed  Google Scholar 

  66. Leung KW, Wong AS. Ginseng and male reproductive function. Spermatogenesis. 2013;3(3):e26391. https://doi.org/10.4161/spmg.26391.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Norn S, Kruse PR. Hjerteglykosider: Fra oldtiden over Witherings digitalis til endogen glykosider [Cardiac glycosides: from ancient history through Withering’s foxglove to endogeneous cardiac glycosides]. Dan Medicinhist Arbog. 2004:119–32.

    Google Scholar 

  68. Silverman ME. William withering and an account of the foxglove. Clin Cardiol. 1989;12(7):415–8.

    Article  CAS  Google Scholar 

  69. Koelle GB. Anticholinesterase agents. In: Goodman LS, Gilman A, editors. The pharmacological basis of therapeutics. 5th ed. New York: Macmillan; 1975. p. 445.

    Google Scholar 

  70. Davis W. The serpent and the rainbow. New York: Warner Books; 1985. p. 36–7.

    Google Scholar 

  71. Fraser TR. On the characters, actions, and therapeutic use of the ordeal bean of Calabar. Edinb Med J. 1863;9:124–32.

    Google Scholar 

  72. Sinha K, Khare V. Review on: ant nutritional factors in vegetable crops. Pharma Innov J. 2017;12:353–8.

    Google Scholar 

  73. Moreira R, Pereira DM, Valentão P, et al. Pyrrolizidine alkaloids: chemistry, pharmacology, toxicology and food safety. Int J Mol Sci. 2018;19(6):1668. https://doi.org/10.3390/ijms19061668.

    Article  CAS  PubMed Central  Google Scholar 

  74. Sharma RP, Salunkhe DK. Solanum glycoalkaloids. In: Cheeke PR, editor. Toxicants of plant origin, vol. 1. Boca Raton: CRC Press; 1989. p. 179–236.

    Google Scholar 

  75. Joint FAO/WHO Expert Committee on Food Additives. Evaluation of certain food additives and naturally occurring toxicants. WHO technical report series. Geneva. 1992. https://apps.who.int/iris/bitstream/handle/10665/40033/WHO_TRS_828pdf?sequence=1. Accessed 14 Apr 2020.

  76. Riddle J. Contraception and abortion from the ancient world to the renaissance. Cambridge: Harvard University Press; 1994. ISBN 9780674168763.

    Google Scholar 

  77. Traylor J, Mathew D. Histamine (scombroid toxicity, Mahi-Mahi flush) toxicity. [Updated 2020 Feb 18]. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2020. https://www.ncbi.nlm.nih.gov/books/NBK499871/. Accessed 5 Apr 2020.

  78. Takemoto T, Daigo K. Constituents of Chondria armata. Chem Pharm Bull. 1958;6(578):580.

    Google Scholar 

  79. Wright JLC, Boyd RK, de Freitas ASW, et al. Identification of domoic acid, a neuroexcitatory amino acid, in toxic mussels from eastern Prince Edward Island. Can J Chem. 1989;67:481–90.

    Article  CAS  Google Scholar 

  80. Perl TM, Bédard L, Kosatsky T, et al. An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N Engl J Med. 1990;322:1775–80.

    Article  CAS  Google Scholar 

  81. Bates SS, Bird CJ, de Freitas ASW, et al. Pennate diatom as the primary source of domoic acid, a toxin in shellfish from eastern Prince Edward Island, Canada. Can J Fish Aquat Sci. 1989;46:1203–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, Y., Mokoena, K.K., Ethan, C. (2022). Natural Toxicants Originating from Food/Diet. In: Zhang, L. (eds) Nutritional Toxicology. Springer, Singapore. https://doi.org/10.1007/978-981-19-0872-9_4

Download citation

Publish with us

Policies and ethics