Skip to main content

Modeling and Sensitivity Analysis of Heat Transfer Enhancement in Double-Pipe Heat Exchanger Using Nanofluid

  • Conference paper
  • First Online:
Recent Advances in Mechanical Engineering

Abstract

Nanofluids have the property of being able to flow heat rapidly, so nanofluids are useful in many applications such as heat distribution, cooling, and various machine tools. The purpose of this research is to determine the heat transfer in the heat exchanger with the cold fluid MnFe2O4–water nanofluid at various input parameters, namely, number of tubes, cold fluid flow rate, and volume fraction of nanoparticles to determine the optimal input response. A sensitive analysis used in this study is the Response Surface Methodology (RSM) to determine the optimum value of the response that affects a factor. Computational Fluid Dynamics (CFD) method is also used in this research to determine heat transfer in fluid flow. The parameters used in this study include the volume fraction percentage of MnFe2O4 nanoparticles (0.025%; 0.05%; 0.075%), nanofluid flow as cold fluid (0.2 l/min; 0.4 l/min; 0.6 l/min), and the number of tubes in the heat exchanger for cold fluids (1 tube; 2 tubes; 3 tubes). The results showed that the input parameters have an influence on LMTD, overall heat transfer coefficient and heat transfer rate with a coefficient of determination (R2) of 87.25%, 99.30%, and 94.18%. The heat characteristics also increased along with the addition of the volume fraction of MnFe2O4 nanoparticles and the nanofluid flow rate in the heat exchanger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Permanasari AA, Kuncara BS, Puspitasari P, Sukarni S, Ginta TL, Irdianto W (2019) Convective heat transfer characteristics of TiO2-EG nanofluid as coolant fluid in heat exchanger. In: AIP Conference Proceedings, vol 2120, no. July. https://doi.org/10.1063/1.5115691

  2. Nahumury FE (2009) Rekayasa Nanofluida Berbasis TiO2 Sebagai Media Pendingin Pada Sistem Penukar Kalor Rekayasa Nanofluida Berbasis TiO2 Sebagai Media. Universitas Indonesia

    Google Scholar 

  3. Sreelakshmy KR, Nair AS, Vidhya KM, Saranya TR, Nair SC (2014) An overview of recent nanofluid research. Int Res J Pharm 5(4): 239–243. https://doi.org/10.7897/2230-8407.050451

  4. Hussein AM, Sharma KV, Bakar RA, Kadirgama K (2013) Heat transfer enhancement with nanofluids—A review. J Mech Eng Sci 4(June):452–461. https://doi.org/10.15282/jmes.4.2013.9.0042

    Article  Google Scholar 

  5. Paper C (2014) CFD simulation of heat transfer in Cfd simulation of heat transfer in nanofluids containing graphene, no. April, pp 0–7

    Google Scholar 

  6. Amani M et al (2017a) ‘Modeling and optimization of thermal conductivity and viscosity of MnFe2O4 nanofluid under magnetic field using an ANN. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-17444-5

  7. Senthilkumar R, Vaidyanathan S, Sivaraman B (2010) Thermal analysis of heat pipe using Taguchi method. Int J Eng Sci Technol 2(4):564–569

    Google Scholar 

  8. Kourkah FF (2017) Optimization of double pipe heat exchanger with 82 response surface methodology using nanofluid and twisted tape. Fluid Mech 3(3):20. https://doi.org/10.11648/j.fm.20170303.12

    Article  Google Scholar 

  9. Han HZ, Li BX, Wu H, Shao W (2015) Multi-objective shape optimization of double pipe heat exchanger with inner corrugated tube using RSM method. Int J Therm Sci 90:173–186. https://doi.org/10.1016/j.ijthermalsci.2014.12.010

    Article  Google Scholar 

  10. Yang LX, Wang F, Meng YF, Tang QH, Liu ZQ (2013) Fabrication and characterization of manganese ferrite nanospheres as a magnetic adsorbent of chromium. J Nanomater 2013. https://doi.org/10.1155/2013/293464

  11. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. https://doi.org/10.1080/08916159808946559

    Article  Google Scholar 

  12. Shahrul IM, Mahbubul IM, Khaleduzzaman SS, Saidur R, Sabri MFM (2014) A comparative review on the specific heat of nanofluids for energy perspective. Renew Sustain Energy Rev 38:88–98. https://doi.org/10.1016/j.rser.2014.05.081

    Article  Google Scholar 

  13. Bhanvase BA, Sarode MR, Putterwar LA, Abdullah KA, Deosarkar MP, Sonawane SH (2014) Intensification of convective heat transfer in water/ethylene glycol based nanofluids containing TiO2 nanoparticles. Chem Eng Process Process Intensif 82:123–131. https://doi.org/10.1016/j.cep.2014.06.009

  14. Senthilraja S, Vijayakumar K, Gangadevi R (2015) A comparative study on thermal conductivity of Al2O3/water, CuO/water and Al2O3 – CuO/water nanofluids. Dig J Nanomater Biostruct 10(4):1449–1458

    Google Scholar 

  15. Holdsworth SD, Simpson R (2016) Heat transfer. Food Eng Ser 17–88. https://doi.org/10.1007/978-3-319-24904-9_2

  16. Holman JP (2010) Heat transfer Tenth Edition

    Google Scholar 

  17. Kleijnen JPC (2015) Response surface methodology. In: International series in operations research and management science

    Google Scholar 

  18. Fadakar Kourkah F (2017) Optimization of double pipe heat exchanger with response surface methodology using nanofluid and twisted tape. Fluid Mech 3(3):20. https://doi.org/10.11648/j.fm.20170303.12

  19. Permanasari AA, Sukarni, Puspitasari P, Utama SB, Yaqin FA (2019) Experimental investigation and optimization of floating blade water wheel turbine performance using Taguchi method and analysis of variance (ANOVA). IOP Conf Ser Mater Sci Eng 515(1): 0–10. https://doi.org/10.1088/1757-899X/515/1/012086

  20. Permanasari AA, Fadel F, Poppy P, Sukarni S (2020) Effect of additional Mnfe2O4 on a combination of Eg-water nanofluid and volumetric flowrate variations towards heat transfer in shell and tube heat exchanger system. Key Eng Mater 851 KEM, no. January 2018:38–46. https://doi.org/10.4028/www.scientific.net/KEM.851.38

  21. Firlianda DA, Permanasari AA, Puspitasari P, Sukarni S(2019) Heat transfer enhancement using nanofluids (MnFe2O4-ethylene glycol) in mini heat exchanger shell and tube. AIP Conf Proc 2120, no. July. https://doi.org/10.1063/1.5115690

  22. Silaipillayarputhur K, Khurshid H (2019) The design of shell and tube heat exchangers – A review. Int J Mech Prod Eng Res Dev 9(1):87–102. https://doi.org/10.24247/ijmperdfeb201910

    Article  Google Scholar 

  23. Guo ZY et al (2010) Effectiveness-thermal resistance method for heat exchanger design and analysis. Int J Heat Mass Transf Elsevier Ltd 53(13–14):2877–2884. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.008

    Article  MATH  Google Scholar 

  24. Shahrul IM et al (2016) Experimental investigation on Al2O3-W, SiO2-W and ZnO-W nanofluids and their application in a shell and tube heat exchanger. Int J Heat Mass Transf Elsevier Ltd 97:547–558. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avita Ayu Permanasari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Permanasari, A.A., Affandi, M.T., Puspitasari, P., Sukarni (2023). Modeling and Sensitivity Analysis of Heat Transfer Enhancement in Double-Pipe Heat Exchanger Using Nanofluid. In: Tolj, I., Reddy, M.V., Syaifudin, A. (eds) Recent Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-0867-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0867-5_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0866-8

  • Online ISBN: 978-981-19-0867-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics