Skip to main content

Research on Active Sampling with Self-supervised Model

  • Conference paper
  • First Online:
Big Data and Security (ICBDS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1563))

Included in the following conference series:

  • 1021 Accesses

Abstract

In the case of insufficient labeled data, active learning performs very well by actively querying more valuable samples. Traditional active learning models usually use the target model to select samples in the image classification tasks. The target model is not only used to find out the crucial unlabeled samples with massive information but also used to perform prediction. This method does not use the information of the remaining unlabeled samples, and the efficiency will also be restricted when using a single model to solve these two tasks simultaneously. We put forward a self-supervised active learning framework to help query samples in this paper. First, we introduce contrastive learning to construct a new feature space. Second, a special active sampling strategy is proposed based on the distance between unlabeled samples and the center of the category clusters. We update the clusters at each iteration to ensure that the examples most needed can be selected for labeling. Experiments show the success of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Settles, B.: Active learning literature survey (2009)

    Google Scholar 

  2. Kapoor, A., Grauman, K., Urtasun, R., Darrell, T.: Active learning with Gaussian processes for object categorization. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  3. Chattopadhyay, R., Wang, Z., Fan, W., Davidson, I., Panchanathan, S., Ye, J.: Batch mode active sampling based on marginal probability distribution matching. In: KDD Proceedings of International Conference on Knowledge Discovery and Data Mining 2012, pp. 741–749 (2013)

    Google Scholar 

  4. Copa, L., Tuia, D., Volpi, M., et al.: Unbiased query-by-bagging active learning for VHR image classification. In: Image and Signal Processing for Remote Sensing XVI. International Society for Optics and Photonics, vol. 7830, p. 78300K (2010)

    Google Scholar 

  5. Jaiswal, A., Babu, A.R., Zadeh, M.Z., et al.: A survey on contrastive self-supervised learning. Technologies (2021)

    Google Scholar 

  6. Wang, L.: Smoothness, disagreement coefficient, and the label complexity of agnostic active learning. J. Mach. Learn. Res. 12, 2269–2292 (2011)

    Google Scholar 

  7. Zhang, L., Chen, C., Bu, J.: Active learning based on locally linear reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 2026–2038 (2011)

    Article  Google Scholar 

  8. Cai, W., Zhang, Y., Zhou, S.: Active learning for support vector machines with maximum model change. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 211–226. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44848-9_14

  9. Yang, Z., Tang, J., Zhang, Y.: Active learning for streaming networked data. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 1129–1138. ACM (2014)

    Google Scholar 

  10. Li, S., Xue, Y., Wang, Z.: Active learning for cross-domain sentiment classification. In: Proceeding of the 23rd International Joint Conference on Artificial Intelligence, pp. 2127–2133 (2013)

    Google Scholar 

  11. Zhang, H.T., Huang, M.L., Zhu, X.Y.: A unified active learning framework for biomedical relation extraction. J. Comput. Sci. Technol. 27(6), 1302–1313 (2014)

    Google Scholar 

  12. Wang, D., Yan, C., Shan, S., et al.: Active learning for interactive segmentation with expected confidence change. In: Proceedings of the 11th Asian Conference on Computer Vision, pp.790–802. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-37331-2_59

  13. King, R.D., Whelan, K.E., Jones, F.M.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427(6971), 247 (2004)

    Google Scholar 

  14. Liu, Y.: Active learning with support vector machine applied to gene expression data for cancer classification. J. Chem. Inf. Comput. Sci. 44(6), 1936–1941 (2004)

    Google Scholar 

  15. Lewis, D., Gale, W.: A sequential algorithm for training text classifiers. In: Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 3–12. ACM/Springer (1994)

    Google Scholar 

  16. Beluch, W.H., Genewein, T., Nurnberger, A., Kohler, J.: The power of ensembles for active learning in image classification. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9368–9377 (2018)

    Google Scholar 

  17. Gilad-Bachrach, R., Navot, A., Tishby, N.: Query by committee made real. In: NIPS (2005)

    Google Scholar 

  18. Settles, B., Craven, M., Ray, S.: Multiple-instance active learning. In: Advances in Neural Information Processing Systems (NIPS), vol. 20, pp. 1289–1296. MIT Press (2008)

    Google Scholar 

  19. Roy, N., McCallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 441–448. Morgan Kaufmann (2001)

    Google Scholar 

  20. Gilad-Bachrach, R., Navot, A., Tishby, N.: Query by committee made real. In: Advances in Neural Information Processing Systems, pp. 443–450 (2006)

    Google Scholar 

  21. Tran, T., Do, T.T., Reid, I.: Bayesian generative active deep learning. In: International Conference on Machine Learning. PMLR, pp. 6295–6304 (2019)

    Google Scholar 

  22. Saito, K., Watanabe, K., Ushiku, Y.: Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3723–3732 (2018)

    Google Scholar 

  23. Higgins, I., Matthey, L., Pal, A.: beta-vae: learning basic visual concepts with a constrained variational framework (2016)

    Google Scholar 

  24. Goodfellow, I., Pouget-Abadie, J., Mirza, M.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Google Scholar 

  25. Bojanowski, P., Joulin, A.: Unsupervised learning by predicting noise (2017)

    Google Scholar 

  26. Alexey, D., Fischer, P., Tobias, J., Springenberg, M.R., Brox, T.: Discriminative unsupervised feature learning with exemplar convolutional neural networks (2014)

    Google Scholar 

  27. Wu, Z., Xiong, Y., Yu, S., Lin, D.: Unsupervised feature learning via non-parametric instance-level discrimination (2018)

    Google Scholar 

  28. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments (2020)

    Google Scholar 

  29. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning (2019)

    Google Scholar 

  30. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations (2020)

    Google Scholar 

  31. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  32. Liu, P., Wang, L., He, G.: A survey on active deep learning: from model-driven to data-driven. arXiv preprint arXiv:2101.09933 (2021)

  33. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. In: AISTATS (2010)

    Google Scholar 

  34. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  35. Dagan, I., Engelson, S.P.: Committee-based sampling for training probabilistic classifiers. In: Machine Learning Proceedings 1995, pp. 150–157. Elsevier(1995)

    Google Scholar 

  36. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Fa Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, SF. (2022). Research on Active Sampling with Self-supervised Model. In: Tian, Y., Ma, T., Khan, M.K., Sheng, V.S., Pan, Z. (eds) Big Data and Security. ICBDS 2021. Communications in Computer and Information Science, vol 1563. Springer, Singapore. https://doi.org/10.1007/978-981-19-0852-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0852-1_54

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0851-4

  • Online ISBN: 978-981-19-0852-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics