Skip to main content

Defect Detection Using Correlation Approach for Frequency Modulated Thermal Wave Imaging

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 292))

  • 577 Accesses

Abstract

Defect detectability of structures and components is one of the significant parameters for proper functioning of industries. Active thermography is a safe and reliable technique for non-destructive testing and evaluation (NDT&E) of these materials during in-service applications. This paper investigates the defect resolvability in a carbon fiber reinforced polymer (CFRP) sample using frequency modulated thermal wave imaging (FMTWI) technique. FMTWI performance has been examined using correlation-based pulse compression (PC) approach and compared with the conventional data processing approaches. Results shows the high sensitivity and resolution to resolve deeper defects of varying depths and diameters in CFRP sample using correlation approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almond, D.P., Patel, P.: Photothermal Science and Techniques. Chapman & Hall Publication (1996).

    Google Scholar 

  2. Hellier, C.J.: Handbook of Nondestructive Evaluation, 2nd edn. McGraw-Hill Education, New York (2013)

    Google Scholar 

  3. Yang, R., He, Y.: Optically and non-optically excited thermography for composites: A review. Infrared Phys. Technol. 75, 26–50 (2016)

    Article  Google Scholar 

  4. Ciampa, F., Mahmoodi, P., Pinto, F., & Meo, M.: Recent advances in active infrared thermography for non-destructive testing of aerospace components. Sensors (Switzerland) 18(2), art. no. 609 (2018).

    Google Scholar 

  5. Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Flash Method of Determining Thermal Diffussivity, Heat Capacity, and Thermal Conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961)

    Article  Google Scholar 

  6. Vavilov, V.P., Burleigh, D.D.: Review of pulsed thermal NDT: Physical principles, theory and data processing. NDT and E Int. 73, 28–52 (2015)

    Article  Google Scholar 

  7. Wang, Z., Tian, G., Meo, M., Ciampa, F.: Image processing based quantitative damage evaluation in composites with long pulse thermography. NDT and E Int. 99, 93–104 (2018)

    Article  Google Scholar 

  8. Maldague, X., Marinetti, S.: Pulsed phase thermography. J. Appl. Phys. 79, 2694–2698 (1996)

    Article  Google Scholar 

  9. Busse, G.: Optoacoustic phase angle measurement for probing a metal. Appl. Phys. Lett. 35(10), 759–760 (1979)

    Article  Google Scholar 

  10. Busse, G., Wu, D., Karpen, W.: Thermal wave imaging with phase sensitive modulated thermography. J. Appl. Phys. 71(8), 3962–3965 (1992)

    Article  Google Scholar 

  11. Dillenz, A., Zweschper, T., Riegert, G., & Busse, G.: Progress in phase angle thermography. Review of Scientific Instruments 74(1 II), 417–419 (2003).

    Google Scholar 

  12. Rantala, J., Wu, D., Busse, G.: Amplitude-modulated lock-in yibro thermography for NDE of polymers and composites. Res. Nondestr. Eval. 7(4), 215–228 (1996)

    Article  Google Scholar 

  13. Wu, D., Busse, G.: Lock-in thermography for nondestructive evaluation of materials. Rev. Gen. Therm. 37(8), 693–703 (1998)

    Article  Google Scholar 

  14. Ibarra-Castanedo, C., Piau, J.-M., Guilbert, S., Avdelidis, N., Genest, M., Bendada, A., Maldague, X.P.V.: Comparative study of active thermography techniques for the nondestructive evaluation of honeycomb structures. Res. Nondestr. Eval. 20(1), 1–31 (2009)

    Article  Google Scholar 

  15. Mulaveesala, R., Tuli, S.: Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection. Applied Physics Letters 89 (19) art. no. 191913 (2006).

    Google Scholar 

  16. Tabatabaei, N., & Mandelis, A.: Thermal-wave radar: A novel subsurface imaging modality with extended depth-resolution dynamic range. Review of Scientific Instruments 80(3), art. no. 034902 (2009).

    Google Scholar 

  17. Rani, A., and Mulaveesala, R.: Pulse compression favorable frequency modulated thermal wave imaging for non-destructive testing and evaluation: An Analytical Study. IOPSciNotes 2(2), art. no. 024401 (2021).

    Google Scholar 

  18. Rani, A., Mulaveesala, R.: Frequency Modulated Thermal Wave Imaging for InfraRed Non-destructive Testing of Mild Steel. Mapan - Journal of Metrology Society of India 36(2), 389–393 (2021)

    Google Scholar 

  19. Carslaw, H. S., and J. C. Jaeger.: Heat conduction in solids. Oxford University Press (1959).

    Google Scholar 

  20. Yang, R., He, Y., Mandelis, A., Wang, N., Wu, X., Huang, S.: Induction infrared thermography and thermal-wave-radar analysis for imaging inspection and diagnosis of blade composites. IEEE Trans. Industr. Inf. 14(12), 5637–5647 (2018)

    Article  Google Scholar 

  21. Rani, A., Mulaveesala, R.: Investigations on pulse compression favourable thermal imaging approaches for characterization of glass fibre reinforced polymers. Electron. Lett. 56(19), 995–998 (2020)

    Article  Google Scholar 

  22. Rani, A., and Mulaveesala, R.: Depth resolved pulse compression favourable frequency modulated thermal wave imaging for quantitative characterization of glass fibre reinforced polymer. Infrared Physics and Technology 110, art. no. 103441 (2020).

    Google Scholar 

  23. Tabatabaei, N.: Matched-filter thermography. Applied Sciences (Switzerland) 8(4), art. no. 581 (2018).

    Google Scholar 

  24. Tabatabaei, N., & Mandelis, A.: Thermal coherence tomography using match filter binary phase coded diffusion waves. Physical Review Letters 107(16), art. no. 165901 (2011).

    Google Scholar 

  25. Mulaveesala, R., & Ghali, V. S.: Cross-correlation-based approach for thermal non-destructive characterisation of carbon fibre reinforced plastics. Insight: Non-Destructive Testing and Condition Monitoring 53(1), pp. 34–36 (2011).

    Google Scholar 

  26. Rani, A., Arora, V., and Mulaveesala, R.: InfraRed image correlation for non-destructive testing and evaluation. Proc. SPIE 11743, Thermosense: Thermal Infrared Applications XLIII, 1174310 (2021).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anju Rani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rani, A., Arora, V., Ramachandra Sekhar, K., Mulaveesala, R. (2022). Defect Detection Using Correlation Approach for Frequency Modulated Thermal Wave Imaging. In: Das, B., Patgiri, R., Bandyopadhyay, S., Balas, V.E. (eds) Modeling, Simulation and Optimization. Smart Innovation, Systems and Technologies, vol 292. Springer, Singapore. https://doi.org/10.1007/978-981-19-0836-1_17

Download citation

Publish with us

Policies and ethics