Skip to main content

An Insight into the Synthesis and Pharmacological Activities of Indoles, Isoindoles and Carbazoles

  • Chapter
  • First Online:
N-Heterocycles

Abstract

Heterocyclic has become an imperative and largest family of organic compounds. Many heterocyclic organic moieties have possessed an extensive variety of biological activity and play a vital role in human life. Indoles, isoindoles and carbazoles, a class of fused N-heterocyclic compounds, are important biological active agents, and continue to draw appreciable attention because of their different biological properties such as anticancer, antifungal, antibacterial, antiulcer, anticonvulsant, anti-inflammatory, antidiabetic, antimalarial, antitumor, anti-HIV, antitubercular, antihypertensive, antihistamine, antihypertensive and analgesic potencies etc. In this chapter we discuss numerous biological activity and synthetic methods of indoles, isoindoles, and carbazole derivatives. Therefore, the research on the synthesis and modification of indoles, isoindoles, and carbazoles are particularly significant for researchers and pharmacologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdolmohammadi S, Shariati S, Fard NE et al (2020) Aqueous-Mediated green synthesis of novel spiro [indole-quinazoline] derivatives using kit-6 mesoporous silica coated Fe3O4 nanoparticles as catalyst. J Heterocycl Chem 57:2729–2737

    Article  CAS  Google Scholar 

  • Abid M, Spaeth A, Török B (2006) Solvent-free solid acid-catalyzed electrophilic annelations: a new green approach for the synthesis of substituted five-membered N-heterocycles. Adv Synth Catal 348:2191–2196

    Article  CAS  Google Scholar 

  • Afzal O, Kumar S, Haider MR et al (2015) A review on anticancer potential of bioactive heterocycle quinoline. Eur J Med Chem 97:871–910

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh-Kouzehrash M, Rahmati A (2021) Solvent-free synthesis of isoindolo [2, 1-c] pyrazolo [1, 5-a] quinazoline and pyrazolo [5′, 1′: 2, 3] pyrimido [6, 1-a] isoindol derivatives through a one-pot three-component reaction. Mol Divers 25:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Barraza SJ, Denmark SE (2018) Synthesis, reactivity, functionalization, and ADMET properties of Silicon-containing Nitrogen heterocycles. J Am Chem Soc 140:666

    Article  CAS  Google Scholar 

  • Bashir M, Bano A, Jaz AS et al (2015) Recent developments and biological activities of N-substituted carbazole derivatives: a review. Molecules 20: 13496-13517

    Google Scholar 

  • Bhatia RK (2017) Isoindole derivatives: propitious anticancer structural motifs. Curr Top Med Chem 17:189–207

    Article  CAS  PubMed  Google Scholar 

  • Bovenkerk M, Esser B (2015) Synthesis of isoindoles by one-electron reductions of dibenzo [1, 4] diazocines. Eur J Org Chem 2015:775–785

    Article  CAS  Google Scholar 

  • Brahmachari G (2015) Green synthetic approaches for biologically relevant heterocycles: an overview. In: Brahmachari G (ed) Green synthetic approaches for biologically relevant heterocycles, 1st edn. Elsevier, Netherlands, pp 1–6

    Google Scholar 

  • Brahmachari G, Nayek N (2017) Catalyst-free one-pot three-component synthesis of diversely substituted 5-aryl-2-oxo-/thioxo-2, 3-dihydro-1 H-benzo [6, 7] chromeno [2, 3-d] pyrimidine-4, 6, 11 (5 H)-triones under ambient conditions. ACS Omega 2:5025–5035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Huang ZT, Wang MX (2004) Heterocyclic enamines: the versatile intermediates in the synthesis of heterocyclic compounds and natural products. Curr Org Chem 8:325–351

    Article  CAS  Google Scholar 

  • Choi I, Chung H, Park JW et al (2016) Active and recyclable catalytic synthesis of indoles by reductive cyclization of 2-(2-nitroaryl) acetonitriles in the presence of Co-Rh Heterobimetallic nanoparticles with atmospheric hydrogen under mild conditions. Org Lett 18:5508–5511

    Article  CAS  PubMed  Google Scholar 

  • Chuprakov S, Gevorgyan V (2007) Regiodivergent metal-catalyzed rearrangement of 3-iminocyclopropenes into N-fused heterocycles. Org Lett 9:4463–4466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claessens S, Jacobs J, Aeken SV et al (2008) Synthesis of benzo [f] isoindole-4, 9-diones. J Org Chem 73:7555–7559

    Article  CAS  PubMed  Google Scholar 

  • Cochard F, Laronze M, Sigaut P et al (2004) Synthesis of carbazoles by a balanced four component condensation. Tetrahedron Lett 45:1703–1707

    Article  CAS  Google Scholar 

  • Csende F, Porkolab A, Matiz K, et al (1992) Preparation and antiarrhythmic activity of hexahydroisoindol‐1‐one derivatives. ChemInform 30:no–no

    Google Scholar 

  • Damodiran M, Kumar RS, Sivakumar PM et al (2009) A simple protocol for the michael addition of indoles with electron deficient olefins catalysed by TBAHS in aqueous media and their broadspectrum antibacterial activity. J Chem Sci 121:65

    Article  CAS  Google Scholar 

  • Dandia A, Parewa V, Rathore KS (2012) Synthesis and characterization of CdS and Mn doped CdS nanoparticles and their catalytic application for chemoselective synthesis of benzimidazoles and benzothiazoles in aqueous medium. Catal Commun 28:90–94

    Article  CAS  Google Scholar 

  • Dandia A, Gupta SL, Parewa V et al (2013) “On-water” synthesis of 3-substituted indoles via Knoevenagel/Michael addition sequence catalyzed by Cu doped ZnS NPs. Tetrahedron Lett 54:5711–5717

    Article  CAS  Google Scholar 

  • Dandia A, Parewa V, Gupta SL et al (2015) Microwave-assisted Fe3O4 nanoparticles catalyzed synthesis of chromeno [1, 6] naphthyridines in aqueous media. Catal Commun 61:88–91

    Article  CAS  Google Scholar 

  • Dandia A, Parewa V, Kumari S et al (2016) Imposed hydrophobic interactions by NaCl: accountable attribute for the synthesis of spiro [acenaphthylene-1, 5′-pyrrolo [1, 2-c] thiazole] derivatives via 1, 3-dipolar cycloaddition reaction in aqueous medium. Green Chem 18:2488–2499

    Article  CAS  Google Scholar 

  • Dandia A, Gupta SL, Indora A et al (2017) Ag NPs decked GO composite as a competent and reusable catalyst for ‘ON WATER’chemoselective synthesis of pyrano [2, 3-c: 6, 5-c′] dipyrazol]-2-ones. Tetrahedron Lett 58:1170–1175

    Article  CAS  Google Scholar 

  • Dandia A, Khan S, Parewa V et al (2017) In multicomponent reactions. In: Dandia A, Ameta KL (eds) Modern synthesis of bioactive heterocycles via IMCR modification, 1st edn. CRC Press Taylor & Francis, United States, pp 229–280

    Google Scholar 

  • Dandia A, Saini P, Sharma R et al (2020) Visible light driven perovskite-based photocatalysts: a new candidate for green organic synthesis by photochemical protocol. Curr Res Green Sustain Chem 3:100031

    Google Scholar 

  • Dandia A, Saini P, Sethi M et al (2021) Nanocarbons in quantum regime: an emerging sustainable catalytic platform for organic synthesis. Catal Rev 1–55

    Google Scholar 

  • Denya I, Malan SF, Joubert J (2018) Indazole derivatives and their therapeutic applications: a patent review. Expert Opin Ther Pat 28:441–453

    Article  CAS  PubMed  Google Scholar 

  • de Wit H, Vicini L, Haig GM et al (2006) Evaluation of the abuse potential of pagoclone, a partial GABAA agonist. J Clin Psychopharmacol 26:268–273

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Wang B, Wu J (2007) Synthesis of isoindol-1-ylphosphonate derivatives via Pd (0)-catalyzed reaction of α-amino (2-alkynylphenyl) methylphosphonate with aryl iodide. Tetrahedron Lett 48:8599–8602

    Article  CAS  Google Scholar 

  • Dounay ABLE (2003) The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem Rev 103:2945

    Article  CAS  PubMed  Google Scholar 

  • Duan S, Sinha-Mahapatra DK, Herndon JW (2008) Synthesis of naphthalenes through three-component coupling of alkynes, fischer carbene complexes, and benzaldehyde hydrazones via isoindole intermediates. Org Lett 10:541–1544

    Article  CAS  Google Scholar 

  • El-Mekabaty A (2014) Chemistry of 2-amino-3-carbethoxythiophene and related compounds. Synth Commun 44:1–31

    Article  CAS  Google Scholar 

  • Festa AA, Voskressensky LG, Van der Eycken EV (2019) Visible light-mediated chemistry of indoles and related heterocycles. Chem Soc Rev 48:4401–4423

    Article  CAS  PubMed  Google Scholar 

  • Heugebaert TS, Stevens CV (2009) Gold (III) chloride catalyzed synthesis of 1-cyanoisoindoles. Org Lett 11:5018–5021

    Article  CAS  PubMed  Google Scholar 

  • Heugebaert TSA, Roman BI, Stevens CV (2012) Synthesis of isoindoles and related iso-condensed heteroaromatic pyrroles. Chem Soc Rev 41:5626–5640

    Article  CAS  PubMed  Google Scholar 

  • Hopkinson MN, Richter C, Schedler M (2014) An overview of N-heterocyclic carbenes. Nature 510:485–496

    Article  CAS  PubMed  Google Scholar 

  • Hui B, W Q, Chiba S (2009) Orthogonal synthesis of isoindole and isoquinoline derivatives from organic azides. Org Lett 11:729–732

    Google Scholar 

  • Hussaini SY, Haque RA, Razali MR (2019) Recent progress in silver (I)-, gold (I)/(III)-and palladium (II)-N-heterocyclic carbene complexes: a review towards biological perspectives. J Org Chem 882:96–111

    Article  CAS  Google Scholar 

  • Kaur N (2019) Applications of palladium dibenzylideneacetone as catalyst in the synthesis of five-membered N-heterocycles. Synth Commun 49:1205–1230

    Article  CAS  Google Scholar 

  • Kaur N, Ahlawat N, Bhardwaj P et al (2020) Ag-mediated synthesis of six-membered N-heterocycles. Synth Commun 50:753–795

    Article  CAS  Google Scholar 

  • Kaur N, Grewal P, Bhardwaj P et al (2019) Nickel-catalyzed synthesis of five-membered heterocycles. Synth Commun 49:1543–1577

    Article  CAS  Google Scholar 

  • Keri RS, Budagumpi S, Pai RK et al (2014) Chromones as a privileged scaffold in drug discovery: a review. Eur J Med Chem 78:340–374

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Rahman H, Khan MM et al (2019) S-acetals: synergistic building blocks for the synthesis of heterocycles. RSC Adv 9:14477–14502

    Article  Google Scholar 

  • Koroch AR, Juliani HR, Zygadio JA (2007) Bioactivity of essential oils and their compounds. In: Berger RG (ed) Flavours and fragrances: chemistry, bioprocessing and sustainability. Springer, New York, pp 87–013

    Chapter  Google Scholar 

  • Kumar S, Aggarwal R (2019) Thiazole: a privileged motif in marine natural products. Mini-Rev Org Chem 16:26–34

    Article  CAS  Google Scholar 

  • Kutateladze AG, Holt T, Reddy DSJ (2019) Natural products containing the oxetane and related moieties present additional challenges for structure elucidation: a DU8+ computational case study. Org Chem 84:7575–7586

    Article  CAS  Google Scholar 

  • Lin C, Zhen L, Cheng Y et al (2015) Visible-Light Induced isoindoles formation to trigger intermolecular diels-alder reactions in the presence of air. Org Lett 17:2684–2687

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wu Y, Li Z et al (2014) Aza boron-pyridyl-isoindoline isomers: synthesis and photophysical properties. J Porphyr Phthalocyanines 18:679–685

    Article  CAS  Google Scholar 

  • Nannini G, Giraldi PN, Molgora G et al (1973) New analgesic-anti-inflammatory drugs. 1-Oxo-2-substituted isoindoline derivatives. Arzneim Forsch 23:1090–1100

    CAS  Google Scholar 

  • Nising CF, Bräse S (2008) The oxa-Michael reaction: from recent developments to applications in natural product synthesis. Chem Soc Rev 37:1218–1228

    Article  CAS  PubMed  Google Scholar 

  • Ni Y, Wu J (2014) Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging. Org Biomol Chem 12:3774–3791

    Article  CAS  PubMed  Google Scholar 

  • Núñez-Álvarez L, Gómez-Doval MÁ, Crecente-Campo J et al (2009) 9H-Dibenzo [a, c] carbazole from microwave assisted Madelung\'s reaction of N-[2-(phenylmethyl) phenyl] benzamide. In: Paper presented at the 13th international electronic conference on synthetic organic chemistry, Universidade de Santiago de Compostela, Lugo, Spain, 1–30 November, 2009

    Google Scholar 

  • Okazaki K, Oshima E Obase H et al (1988) Isoindolin-1-one derivative and antiarrhythmic agent. US Patent 4,849,441

    Google Scholar 

  • Padwa A, Ishida M, Muller CL et al (1992) 2, 3-Dihalo-1-(phenylsulfonyl)-1-propenes as versatile reagents for the synthesis of annulated furans and cyclopentenones. J Org Chem 57:1170–1178

    Article  CAS  Google Scholar 

  • Peng C, Cheng J, Wang J (2008) Sequential copper (I)-catalyzed reaction of amines with o-acetylenyl-substituted phenyldiazoacetates. Adv Synth Catal 350:2359–2364

    Article  CAS  Google Scholar 

  • Qi B, Li L, Wang Q et al (2019) Rh (III)-catalyzed coupling of N-chloroimines with α-diazo-α-phosphonoacetates for the synthesis of 2 H-isoindoles. Org Lett 21:6860–6863

    Article  CAS  PubMed  Google Scholar 

  • Ramsewak RS, Nair MG, Strasburg GM et al (1999) Biologically active Carbazole Alkaloids from Murraya k oenigii. Food Chem 47:444–447

    Article  CAS  Google Scholar 

  • Reyes A, Huerta L, Alfaro M, Navarrete A (2010) Synthesis and nootropic activity of some 2, 3‐dihydro‐1H‐isoindol‐1‐one derivatives structurally related with piracetam. Chem Biodivers 7:2718–2726

    Google Scholar 

  • Roy J, Jana AK, Mal D (2012) Recent trends in the synthesis of carbazoles: an update. Tetrahedron 68:6099–6121

    Article  CAS  Google Scholar 

  • Rostovtsev VV, Green G, Fokin VV et al (2002) A stepwise huisgen cycloaddition process: copper (I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem 114:2708–2711

    Article  Google Scholar 

  • Sadiq Z, Akbar Hussain E, Naz S (2017) Carbazole derivatives by microwave promoted protocols: a mini review. Mini-Rev Org Chem 14:469–488

    Article  CAS  Google Scholar 

  • Saravanabhavan M, Murugesan V, Sekar MJ (2014) Microwave assisted synthesis of pyrido [2, 3-a] carbazoles; investigation of in vitro DNA binding/cleavage, antioxidant and cytotoxicity studies. Photochem Photobiol B Biol 133:145–152

    Article  CAS  Google Scholar 

  • Shalini K, Sharma PK, Kumar N (2010) Imidazole and its biological activities: a review. Der Chemica Sinica 1:36–47

    CAS  Google Scholar 

  • Sharma V, Kumar P, Pathak D (2010) Biological importance of the indolenucleus in recent years: a comprehensive review. J Heterocycl Chem 47:491–502

    CAS  Google Scholar 

  • Shinde RS, Haghi AK (2020) Design and synthesis of triazine amine derivatives as antibacterial and antifungal agents. In: Shinde RS, Haghi AK (eds) Modern green chemistry and heterocyclic compounds: molecular design, synthesis, and biological evaluation, 1st edn. CRC Press, United State, pp 59–78

    Chapter  Google Scholar 

  • Singh TP, Singh OM (2018) Recent progress in biological activities of indoleand indole alkaloids. Mini-Rev Med Chem 18:9–25

    CAS  PubMed  Google Scholar 

  • Sridharan V, Martín MA, Menéndez JC (2009) Acid‐Free synthesis of carbazoles and carbazolequinones by intramolecular Pd‐catalyzed, microwave‐assisted oxidative biaryl coupling reactions-efficient syntheses of murrayafoline A, 2‐methoxy‐3‐methylcarbazole, and glycozolidine. Eur J Org Chem 4614–4621

    Google Scholar 

  • St Jean DJ, Poon SF, Schwarzbach JL (2007) A tandem cross-coupling/SNAr approach to functionalized carbazoles. Org Lett 9:4893–4896

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Suenobu K, Ogura K (1985) An efficient method for synthesis of 1-cyano-2-substituted-isoindoles by Strecker reaction using o-phthalaldehyde and primary amines. Chem Lett 14:487–1488

    Article  Google Scholar 

  • Tan KL, Bergman RG, Ellman JA (2001) Annulation of alkenyl-substituted heterocycles via rhodium-catalyzed intramolecular C−H activated coupling reactions. J Am Chem Soc 123:2685–2686

    Article  CAS  PubMed  Google Scholar 

  • Tianhui R, Qunji X (1994) A survey on multifunctional oil additives of N-containing heterocyclic compounds and their derivatives. Tribology 14:370–381

    Google Scholar 

  • Toure BB, Hall DG (2009) Natural product synthesis using multicomponent reaction strategies. Chem Rev 109:4439–4486

    Article  CAS  PubMed  Google Scholar 

  • Tsang WP, Zheng N, Buchwald SL (2005) Combined C–H functionalization/C–N bond formation route to carbazoles. J Am Chem Soc 127:14560–14561

    Article  CAS  PubMed  Google Scholar 

  • Vicente R (2011) Recent advances in indole syntheses: new routes for a classic target. Org Biomol Chem 9:6469–6480

    Article  CAS  PubMed  Google Scholar 

  • Wada T, Fukuda N (1992) Effect of a new anxiolytic, DN-2327, on learning and memory in rats. Pharmacol Biochem Behav 41:573–579

    Article  CAS  PubMed  Google Scholar 

  • Wu CJ, Meng QY, Lei T et al (2016) An oxidant-free strategy for indole synthesis via intramolecular C-C bond construction under visible light irradiation: cross-coupling hydrogen evolution reaction. ACS Catal 6:4635–4639

    Article  CAS  Google Scholar 

  • Wu J, Xie Y, Chen X et al (2016) Transition metal-free carbazole synthesis from arylureas and cyclohexanones. Adv Synth Catal 358:3206–3211

    Article  CAS  Google Scholar 

  • Xu DQ, Wu J, Luo SP et al (2009) Fischer indole synthesis catalyzed by novel SO 3 H-functionalized ionic liquids in water. Green Chem 11:1239

    Article  CAS  Google Scholar 

  • Yamane Y, Liu X, Hamasaki A et al (2009) One-pot synthesis of indoles and aniline derivatives from nitroarenes under hydrogenation condition with supported gold nanoparticles. Org Lett 11:5162–5165

    Article  CAS  PubMed  Google Scholar 

  • Ye D, Wang J, Zhang X et al (2009) Gold-catalyzed intramolecular hydroamination of terminal alkynes in aqueous media: efficient and regioselective synthesis of indole-1-carboxamides. Green Chem 11:1201–1208

    Article  CAS  Google Scholar 

  • Yeom HS, Lee Y, Lee JE et al (2009) Geometry-dependent divergence in the gold-catalyzed redox cascade cyclization of o-alkynylaryl ketoximes and nitrones leading to isoindoles. Org Biomol Chem 7:4744–4752

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Wu Q, Wang J et al (2016) Red to near-infrared isoindole BODIPY fluorophores: synthesis, crystal structures, and spectroscopic and electrochemical properties. J Org Chem 81:3761–3770

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Li R, Su Y et al (2019) Synthesis of isoindoles from intramolecular condensation of benzyl azides with α-aryldiazoesters. Org Chem 84:5813–5820

    Article  CAS  Google Scholar 

  • Zsotér TT, Hart F, Radde IC (1972) Effect of chlorthalidone on blood vessels. J Pharmacol Exp Ther 180:723–731

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, S., Kumar, K., Meena, S., Dandia, A., Ameta, K.L., Parewa, V. (2022). An Insight into the Synthesis and Pharmacological Activities of Indoles, Isoindoles and Carbazoles. In: Ameta, K.L., Kant, R., Penoni, A., Maspero, A., Scapinello, L. (eds) N-Heterocycles. Springer, Singapore. https://doi.org/10.1007/978-981-19-0832-3_11

Download citation

Publish with us

Policies and ethics