Skip to main content

Prospects for Inulin Processing

  • Chapter
  • First Online:
Jerusalem Artichoke Food Science and Technology

Abstract

At present, the development of food and pharmaceutical production and “innovation” is a very important interdisciplinary science. There is an opportunity to speed up these processes. Because there are still not enough studies, for example, on the innovative biochemical properties of inulin and its oligomers. The development of H. tuberosus processing and application technology will be a dominant area of economic importance and potential in the future. Inulin has promising technological and functional properties. In addition, nutritional sources of inulin can be sought as a promising health-enhancing ingredient that is rich in dietary fiber and can be adapted to a variety of therapeutic and functional food recipes. Inulin, as a fat substitute, can be used effectively in the production of low-calorie functional foods without adversely affecting the health of consumers, thereby reducing the risk of hypercholesterolemia and hyperglycemia. The FOOD2030 strategy implies that planned research and innovation policies are based on the development of sustainable, healthy, and inclusive food systems. Fructooligosaccharides (FOS) for the development of next-generation probiotics and prebiotics will be a challenge for research and legal and international regulatory definitions. It is obvious that it is necessary to identify/evaluate the existing/modern industrial production of inulin, to improve its processing methods, which will ensure the guaranteed safety and quality of production. The development of inulin processing technologies will be an important area for the future in terms of economic potential, as it is a useful raw material for biofuels, especially bioethanol, inulin-containing medicines, novel foods, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DP:

Degrees of polymerization

EC:

European Commission

FOS:

Fructooligosaccharides

HMF:

Hydroxymethylfurfural

IPFSS:

International Food Systems Science Platform

References

  1. Food and Agriculture Organization of the United Nations (2017) The future of food and agriculture – Trends and challenges [Internet]. [cited 2021 Apr 20]; p 180. http://www.fao.org/3/i6583e/i6583e.pdf

  2. Drugulescu M, Orțan A, Temocico G, Moraru I, Ovidiu P (2020) Prospects of inulin from Helianthus tuberosus L. as raw material for bioprocesses – review. AgroLife Sci J [Internet] 9(2):103–111. http://agrolifejournal.usamv.ro/pdf/vol.IX_2/Art12.pdf. [cited 2021 Jun 19]

    Google Scholar 

  3. Waqas A, Summer R (2019) Functional and therapeutic potential of inulin: a comprehensive review. Crit Rev Food Sci Nutr [Internet]. 59(1):1–13. https://doi.org/10.1080/10408398.2017.135577. [cited 2021 Jan 15]

    Article  Google Scholar 

  4. Roberfroid MB (2005) Introducing inulin-type fructans. Br J Nutr Internet. 93(S1):S13–S25. https://doi.org/10.1079/BJN20041350. [cited 2021 Feb 19]

    Article  CAS  Google Scholar 

  5. Niness KR (1999) Inulin and oligofructose: what are they? J Nutr [Internet] 129(7):1402–1406. https://academic.oup.com/jn/article/129/7/1402S/4722577. [cited 2021 March 1]

    Article  Google Scholar 

  6. Franck A, De Leenheer L (2005) Inulin. Biopolymers Online [Internet]. [cited 2021 March 5]; 439–448. https://doi.org/10.1002/3527600035.bpol6014)

  7. Chi ZM, Zhang T, Cao TS, Liu XY, Cui W, Zhao CH (2011) Biotechnological potential of inulin for bioprocesses. Bioresour Technol [Internet] 102(6):4295–4303. https://pubmed.ncbi.nlm.nih.gov/21247760/. [cited 2021 June 5]

    Article  CAS  Google Scholar 

  8. Luo D, Li Y, Xu B, Ren G, Li P (2017) Effects of inulin with different degree of polymerization on gelatinization and retrogradation of wheat starch. Food Chem [Internet]. 229:35–43. https://doi.org/10.1016/j.foodchem.2017.02.058. [cited 2021 June 5]

    Article  CAS  PubMed  Google Scholar 

  9. Radulovic̈ NS, Dordevic̈ MR (2014) Chemical composition of the tuber essential oil from Helianthus tuberosus L (Asteraceae). Chem Biodiver Internet. 11(3):427–437. https://doi.org/10.1002/cbdv.201300323. [cited 2021 June 15]

    Article  CAS  Google Scholar 

  10. Kaur N, Gupta AK (2002) Applications of inulin and oligofructose in health and nutrition. J Biosci [Internet] 27(7):703–714. https://doi.org/10.1007/BF02708379. [cited 2021 July 1]

    Article  CAS  Google Scholar 

  11. Arnon-Rips H, Poverenov E (2018) Improving food products’ quality and storability by using Layer by Layer edible coatings. Trends Food Sci Technol [Internet]. 75:81–92. https://doi.org/10.1016/j.tifs.2018.03.003. [cited 2021 June 1]

    Article  CAS  Google Scholar 

  12. Espitia PJ, Fuenmayor CA, Otoni CG (2018) Nanoemulsions: Synthesis, characterization, and application in bio-based active food packaging. Compr Rev Food Sci Food Saf [Internet]. 18(1):264–285. https://doi.org/10.1111/1541-4337.12405. [cited 2021 April 5]

    Article  CAS  PubMed  Google Scholar 

  13. Galus S, Kadzinska J (2015) Food applications of emulsion-based edible films and coatings. Trends Food Sci Technol [Internet] 45(2):273–283. https://doi.org/10.1016/j.tifs.2015.07.011. [cited 2021 April 15]

    Article  CAS  Google Scholar 

  14. Pinzon MI, Garcia OR, Villa CC (2018) The influence of Aloe vera gel incorporation on the physicochemical and mechanical properties of banana starch-chitosan edible films. J Sci Food Agric [Internet]. 98(11):4042–4049. https://doi.org/10.1002/jsfa.8915. [cited 2021 April 5]

    Article  CAS  PubMed  Google Scholar 

  15. Restrepo AE, Rojas JD, García OR, Sanchez LT, Pinzon MI, Villa CC (2018) Mechanical, barrier, and color properties of banana starch edible films incorporated with nanoemulsions of lemongrass (Cymbopogon citratus) and rosemary (Rosmarinus officinalis) essential oils. Food Sci Technol Int [Internet]. 24(8):705–712. https://doi.org/10.1177/1082013218792133. [cited 2021 April 5]

    Article  CAS  PubMed  Google Scholar 

  16. Shah U, Naqash F, Gani A, Masoodi FA (2016) Art and science behind modified starch edible films and coatings: A review. Compr Rev Food Sci Food Saf Internet. 15(3):568–580. https://doi.org/10.1111/1541-4337.12197. [cited 2021 April 25]

    Article  CAS  Google Scholar 

  17. Li L, Wang X, Zhang Y, Qin S (2013) Characterization of edible films prepared from Jerusalem artichoke extracts. J Food Agric Environ [Internet]. 11(2):81–85. https://www.researchgate.net/publication/288647947_Characterization_of_edible_films_prepared_from_Jerusalem_artichoke_extracts. [cited 2021 Feb 2]

    CAS  Google Scholar 

  18. Bot A, Erle U, Vreeker R, Agterof WG (2014) Influence of crystallization conditions on the large deformation rheology of inulin gels. Food Hydrocoll [Internet]. 18(4):547–556. https://www.sciencedirect.com/science/article/abs/pii/S0268005X03001565. [cited 2021 Jan 12]

    Article  Google Scholar 

  19. Espitia PJ, Batista RA, Azeredo HM, Otoni CG (2016) Probiotics and their potential applications in active edible films and coatings. Food Res Int [Internet]. 90:42–52. https://doi.org/10.1016/j.foodres.2016.10.026. [cited 2021 Jan 15]

    Article  CAS  PubMed  Google Scholar 

  20. Odila Pereira J, Soares J, Sousa S, Madureira AR, Gomes A, Pintado M (2016) Edible films as carrier for lactic acid bacteria. LWT [Internet]. 73:543–550. https://doi.org/10.1016/j.lwt.2016.06.060. [cited 2021 Feb 3]

    Article  CAS  Google Scholar 

  21. Soukoulis C, Yonekura L, Gan HH, Behboudi-Jobbehdar S, Parmenter C, Fisk I (2014) Probiotic edible films as a new strategy for developing functional bakery products: The case of pan bread. Food Hydrocoll [Internet]. 39:231–242. https://doi.org/10.1016/j.foodhyd.2014.01.023. [cited 2021 Feb 23]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Soukoulis C, Singh P, Macnaughtan W, Parmenter C, Fisk ID (2016) Compositional and physicochemical factors governing the viability of Lactobacillus rhamnosus GG embedded in starch-protein based edible films. Food Hydrocoll [Internet]. 52:876–887. https://doi.org/10.1016/j.foodhyd.2015.08.025. [cited 2021 Feb 2]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ebrahimi B, Mohammadi R, Rouhi M, Mortazavian AM, Shojaee-Aliabadi S, Koushki MR (2018) Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT [Internet]. 87:54–60. https://doi.org/10.1016/j.lwt.2017.08.066. [cited 2021 Feb 12]

    Article  CAS  Google Scholar 

  24. Rodrigues FJ, Cedran MF, Garcia S (2018) Influence of linseed mucilage incorporated into an alginate-base edible coating containing probiotic bacteria on shelf-life of fresh-cut yacon (Smallanthus sonchifolius). Food Bioprocess Technol [Internet]. 11(8):1605–1614. https://doi.org/10.1007/s11947-018-2128-z. [cited 2021 Feb 12]

    Article  CAS  Google Scholar 

  25. Settier-Ramírez L, Lopez-Carballo G, Gavara R, Hernandez-Munoz P (2019) Antilisterial properties of PVOH-based films embedded with Lactococcus lactis subsp. lactis. Food Hydrocoll [Internet]. 87:214–220. https://doi.org/10.1016/j.foodhyd.2018.08.007. [cited 2021 Jan 15]

    Article  CAS  Google Scholar 

  26. Soukoulis C, Behboudi-Jobbehdar S, Macnaughtan W, Parmenter C, Fisk ID (2017) Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate. Food Hydrocoll [Internet]. 70:345–355. https://doi.org/10.1016/j.foodhyd.2017.04.014. [cited 2021 March 1]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Orozco-Parra J, Mejía CM, Villa CC (2020) Development of a bioactive synbiotic edible film based on cassava starch, inulin, and Lactobacillus casei. Food Hydrocoll [Internet]. 104:105754. https://www.sciencedirect.com/science/article/abs/pii/S0268005X19326359?via%3Dihub. [cited 2021 March 23]

    Article  CAS  Google Scholar 

  28. Sayre R, Beeching JR, Cahoon EB, Egesi C, Fauquet C, Fellman J et al (2011) The BioCassava Plus Program: Biofortification of cassava for sub-Saharan Africa. Annu Rev Plant Biol [Internet]. 62:51–272. https://doi.org/10.1146/annurev-arplant-042110-103751. [cited 2021 April 3]

    Article  CAS  Google Scholar 

  29. Bersaneti GT, Mantova J, Magri A, Mali S, Celligoi MA (2016) Edible films based on cassava starch and fructooligosaccharides produced by Bacillus subtilis natto CCT 7712. Carbohydr Polym [Internet]. 151:1132–1138. https://doi.org/10.1016/j.carbpol.2016.06.081. [cited 2021 Jan 3]

    Article  CAS  PubMed  Google Scholar 

  30. Chai J, Jiang P, Wang P, Jiang Y, Li D, Bao W et al (2018) The intelligent delivery systems for bioactive compounds in foods: Physicochemical and physiological conditions, absorption mechanisms, obstacles, and responsive strategies. Trends Food Sci Technol [Internet]. 78:144–154. https://research.wur.nl/en/publications/the-intelligent-delivery-systems-for-bioactive-compounds-in-foods. [cited 2021 Jan 13]

    Article  CAS  Google Scholar 

  31. Charoensiddhi S, Conlon MA, Franco CM, Zhang W (2017) The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies. Trends Food Sci Technol [Internet]. 70:20–33. https://doi.org/10.1016/j.tifs.2017.10.002. [cited 2021 Jan 23]

    Article  CAS  Google Scholar 

  32. Schaafsma G, Slavin JL (2014) Significance of inulin fructans in the human diet. Compr Rev Food Sci Food Saf [Internet] 14(1):37–47. [cited 2021 March 3]. https://doi.org/10.1111/1541-4337.12119

    Article  CAS  Google Scholar 

  33. Morreale F, Benavent-Gil Y, Rosell CM (2019) Inulin enrichment of gluten free breads: interaction between inulin and yeast. Food Chem [Internet]. 278:545–551. https://doi.org/10.1016/j.foodchem.2018.11.066. [cited 2021 March 3]

    Article  CAS  PubMed  Google Scholar 

  34. George Kerry R, Patra JK, Gouda S, Park Y, Shin HS, Das G (2018) Benefaction of probiotics for human health: a review. J Food Drug Anal [Internet]. 26(3):927–939. https://doi.org/10.1016/j.jfda.2018.01.002. [cited 2021 April 3]

    Article  CAS  PubMed  Google Scholar 

  35. Guio F, Mauro AR, Alméciga-Diaz CJ, Sánchez OF (2009) Recent trends in fructooligosaccharides production. Recent Pat Food Nutr Agric [Internet] 1(3):221–230. https://doi.org/10.2174/2212798410901030221. [cited 2021 April 15]

    Article  CAS  Google Scholar 

  36. Lafraya Á, Sanz-Aparicio J, Polaina J, Marín-Navarro J (2011) Fructo-oligosaccharide synthesis by mutant versions of saccharomyces cerevisiae invertase. Appl Environ Microbiol [Internet]. 77(17):6148–6157. https://doi.org/10.1128/AEM.05032-11. [cited 2021 January 5]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Calder PC, Carr AC, Gombart AF, Eggersdorfer M (2020) Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients [Internet]. 12:1181. https://pubmed.ncbi.nlm.nih.gov/32340216/. [cited 2021 March 2]

    Article  CAS  Google Scholar 

  38. Franck A, Levecke B (2012) Inulin. In: Ullmann’s Encyclopaedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co, Hoboken, pp 1–15

    Google Scholar 

  39. Cunningham M, Azcarate-Peril MA, Barnard A, Benoit V, Grimaldi R, Guyonnet D et al (2021) Shaping the future of probiotics and prebiotics. Trends Microbiol [Internet]. 29(8):667–685. https://doi.org/10.1016/j.tim.2021.01.003. [cited 2021 May 21]

    Article  CAS  PubMed  Google Scholar 

  40. Mutanda T, Mokoena MP, Olaniran AO, Wilhelmi BS, Whiteley CG (2014) Microbial enzymatic production and applications of short-chain fructooligosaccharides and inulooligosaccharides: recent advances and current perspectives. J Ind Microbiol Biotechnol [Internet] 41(6):893–906. https://doi.org/10.1007/s10295-014-1452-1

    Article  CAS  Google Scholar 

  41. Sanders M, Merenstein DJ, Rei G, Glenn RG, Rastall RA (2019) Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol [Internet]. 16:605–616. https://doi.org/10.1038/s41575-019-0173-3. [cited 2021 January 2]

    Article  PubMed  Google Scholar 

  42. Merenstein DJ, Sanders ME, Tancredi DJ (2020) Probiotics as a Tx resource in primary care. J Fam Pract [Internet] 69(3):E1–E10. https://cdn.mdedge.com/files/s3fs-public/JFP06904e1.pdf. [cited 2021 April 2]

    Google Scholar 

  43. Huys G, Botteldoorn N, Delvigne F, De Vuyst L, Heyndrickx M, Pot B et al (2013) Microbial characterization of probiotics—Advisory report of the Working Group “8651 Probiotics” of the Belgian Superior Health Council (SHC). Mol Nutr Food Res [Internet]. 57(8):1479–1504. https://doi.org/10.1002/mnfr.201300065. [cited 2021 August 12]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeng X, Luo D, Liu S, Liu J (2010) Recent advance and future trend of inulin research and development. China Food Addit [Internet]. https://en.cnki.com.cn/Article_en/CJFDTotal-ZSTJ201004044.htm. [cited 2021 January 5]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvyra Jarienė .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jarienė, E. (2022). Prospects for Inulin Processing. In: Sawicka, B., Krochmal-Marczak, B. (eds) Jerusalem Artichoke Food Science and Technology. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-19-0805-7_9

Download citation

Publish with us

Policies and ethics