Skip to main content

Biomolecules from Humus Oil

  • Reference work entry
  • First Online:
Handbook of Biopolymers
  • 1083 Accesses

Abstract

Humic substances are complex biopolymers found in soils, water bodies, and sediments. The application of humus-based materials in biomedicine is emerging because of its medicinal properties. Specifically, humic acid could demonstrate antiviral action against several viruses. This chapter summarizes recent advances on the effect of several interventions on humus composition, properties, and structures. It also highlights the biomedical applications of humic substances, especially in drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • P.C. Baveye, M. Wander, The (bio) Chemistry of soil humus and humic substances: Why is the “new view” still considered novel after more than 80 years? Front. Environ. Sci. 7, 27 (2019)

    Google Scholar 

  • O. Bezuglova, A. Komarov, Identification of humic substances on the transformation of an organic substrate. Eur. J. Soil Sci. 11(1), 10–16 (2022)

    CAS  Google Scholar 

  • S. Biggs, D. Livermore, M.G. Seitz, Humic substances in natural waters and their complexation with trace metals and radionuclides: A review (1985)

    Google Scholar 

  • A.A. Bogush, G.A. Leonova, S.K. Krivonogov, V.A. Bychinsky, V.A. Bobrov, A.E. Maltsev, V.D. Tikhova, L.V. Miroshnichenko, L.M. Kondratyeva, A.E. Kuzmina, Biogeochemistry and element speciation in sapropel from freshwater Lake Dukhovoe (East Baikal region, Russia). Appl. Geochem. 143, 105384 (2022)

    CAS  Google Scholar 

  • B.K.H. Bujang, K. Sina, P. Arun, B. Massoumeh, State of an art review of peat: General perspective. Int. J. Phys. Sci. 6(8), 1988–1996 (2011)

    Google Scholar 

  • F.R. Calvo, J. Sanchez, A. Acosta, D. Wolf, D. Faust, Granulometrical, mineralogical and geochemical characterization of loess deposits in the Tajo Basin. Quat. Int. 407, 14–28 (2016)

    Google Scholar 

  • L.P. Canellas, F.L. Olivares, N.O. Aguiar, D.L. Jones, A. Nebbioso, P. Mazzei, A. Piccolo, Humic and fulvic acids as biostimulants in horticulture. Sci. Horticulture. 196, 15–27 (2015)

    CAS  Google Scholar 

  • C.A. Casali, D.F. Moterle, D.S. Rheinheimer, G. Brunette, A.L.M. Corcini, Kaminski J..., Copper forms and desorption in soils under grapevine in the Serra Gaucha of Rio Grande do sul. Rev. Bras. Ci. Solo. 32, 1479–1487 (2008)

    CAS  Google Scholar 

  • S. Codish, M. Abdu-Shakra, D. Flusser, M. Fringer, S. Sukenik, Mud compress therapy for the hands of patients with rheumatoid arthritis. Rheumatol. Int. 25, 49–54 (2005)

    Google Scholar 

  • G. Gungen, A. Fusan, G. Findikoglu, R. Simin, The effect of mud pack therapy on serum YKL-40 and hsCRP levels in patients with knee osteoarthritis. Rheumatol. Int. 32(5), 1235–1244 (2012)

    CAS  Google Scholar 

  • X. Guo, J. Huang, Y. Lu, G. Shan, Li., The influence of flue gas desulphurization gypsum additive on characteristics and evolution of humic substance during co-composting of dairy manure and sugarcane pressmud. Bioresour. Technol. 219, 169–174 (2016)

    CAS  Google Scholar 

  • T.G. Ivanova, T.M. Tronova, L.V. Kapilevich, L.N. Andreĭko, E.S. Kilina, O.A. Karelina, E.F. Levitskiĭ, E.V. Knipenberg, Ispol’zovanie sapropeleĭ pri osteoartroze u uchastnikov likvidatsii posledstviĭ avarii na Chernobyl’skoĭ AES [The use of sapropels in osteoarthritis in participants in the cleanup of the aftermath of the accident at the Chernobyl Atomic Electric Power Station]. Vopr. Kurortol. Fizioter. Lech. Fiz. Kult. 3, 23–25 (1997). Russian PMID: 9334049.

    Google Scholar 

  • K.K. Jacob, P.K.J. Prashob, N. Chandramohanakumar, Humic substances as a potent biomaterials for therapeutic and drug delivery system – A review. Int. J. Appl. Pharma. 11(3), 1–4 (2019)

    Google Scholar 

  • B.S. Kamilov, A.S.H. Makhkamova, G.S. Sodikova, E.T. Kodirov, Effect of humate substances on biological activity and physical properties of eroded soils: A case study of Uzbekistan. IOP Conf. Ser: Earth Environ. Sci 939(1), 012041 (2021)

    Google Scholar 

  • M.A. Kamrin, Pesticide Profiles. Toxicity, Environmental Impact and Fate (CRC Press, Boca Raton, 1997)

    Google Scholar 

  • J. Lawrence, Humic acid and related substances in the environment, in Analysis of Trace Organics in the Aquatic Environment, (CRC Press, 2017), pp. 313–337

    Google Scholar 

  • S.I. Levshina, L.A. Matyushkina, The distribution of dissolved forms of metals and metal-humus complexes in Zeya reservoir water. Water Res. 48(6), 967–976 (2021)

    CAS  Google Scholar 

  • C. Li, B. Zhang, T. Ertunc, A. Schaeffer, R. Ji, Birnessite -induced binding of phenolic monomers to soil humic substances and nature of the bound residues. Environ. Sci. Technol. 46(16), 8843–8850 (2012)

    CAS  Google Scholar 

  • Z. Liu, Y. Zu, R. Meng, Z. Xing, S. Tan, L. Zhao, T. Sun, Z. Zhou, Adsorption of humic acid onto carbonaceous surfaces: Atomic force microscopy study. Microsc. Microanal. 17, 1015–1021 (2011)

    CAS  Google Scholar 

  • R.M. Maier, Biogeochemical cycling, in Environmental Microbiology, (Academic Press, 2015), pp. 339–373

    Google Scholar 

  • P. Mazzei, A. Piccolo, Quantitative evaluation of noncovalent interactions between glyphosphate and dissolved humic substances by NMR spectroscopy. Environ. Sci. Technol. 46(11), 5939–5946 (2012)

    CAS  Google Scholar 

  • E.Y. Milkheev, Y.B. Tsybenov, Amphiphilic properties of humic substances in soils of the South Vitim Plateau (Transbaikalia, Eastern Siberia). IOP Conf. Ser: Earth Environ. Sci 908(1), 012034 (2021)

    Google Scholar 

  • N. Mirlean, A. Roisenberg, J.O. Chies, Metal contamination of vineyard soils in wet subtropics + Southern Brazil. Environ. Pollut. 149, 10–17 (2007)

    CAS  Google Scholar 

  • T. Mishra, H.S. Dhaliwal, P.K. Gill, Characterization of humic acid synthesized from wheat bran through microbial strains associated with Shilajit. Trends Life Sci. 4(4), 458–466 (2015)

    Google Scholar 

  • B.S. Ndzelu, S. Dou, X. Zhang, Y. Zhang, R. Ma, X. Liu, Tillage effects on humus composition and humic acid structural characteristics in soil aggregate-size fractions. Soil Till. Res. 213, 105090 (2021)

    Google Scholar 

  • A.K. Pandey, S.D. Pandey, V. Misra, P.N. Viswananthan, Formation of soluble complexes of metals with humic acid and it’s environmental significance. Chem. Ecol. 16, 269–282 (1999)

    CAS  Google Scholar 

  • A.K. Pandey, S.D. Pandey, V. Misra, Stability constants of metal-humic acid complexes and it’s role in environmental detoxification. Eco. Environ. 47, 195–200 (2000)

    CAS  Google Scholar 

  • R.E. Petit, Organic matter, humus, humate, humic acid, fulvic acid and humin: Their importance in soil fertility and plant health. CTI Res. 10, 1–7 (2004)

    Google Scholar 

  • F. Raiesi, The quantity and quality of soil organic matter and humic substances following dry farming and subsequent restoration in an upland pasture. Catena 202, 105249 (2021)

    CAS  Google Scholar 

  • M. Rashad, M. Hafez, A.I. Popov, Humic substances composition and properties as an environmentally sustainable system: A review and way forward to soil conservation. J. Plant Nutr. 45(7), 1072–1122 (2022)

    CAS  Google Scholar 

  • G.I. Sarapulova, Study of the immobilizing capacity of humic substances in soils at oil contamination. IOP Conf. Ser: Earth Environ. Sci 720(1), 012046 (2021)

    Google Scholar 

  • S.B. Selyanina, L.N. Parfenova, M.V. Trufanova, A comparative study of surfactant properties of aromatic macromolecular compounds of lignin and humus nature. Russian J. Appl. Chem. 85(8), 1275–1281 (2012)

    CAS  Google Scholar 

  • A.K.H. Sheudzhen, O.A. Gutorova, Humus state of the soil under liquid manure application on Kuban rice crops. IOP Conf. Ser: Earth Environ. Sci 908(1), 012034 (2021)

    Google Scholar 

  • K. Sina, P. Arun, B.K.H. Bujang, B. Maassoumeh, A state of art review: Geotechnical engineering perspective. Int. J. Phys. Sci. 6(8), 1974–1981 (2011)

    Google Scholar 

  • P. Sollins, P. Homann, B.A. Caldwell, Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma 74(1–2), 65–105 (1996)

    Google Scholar 

  • S.S. Talmage et al., The fate of chemical warfare agents in the environment, in Chemical Warfare Agents: Toxicology and Treatment, 2nd edn., (Wiley, Chichester, 2007), pp. 89–125

    Google Scholar 

  • K.H. Tan, Environmental Soil Science (Dekkar, New York, 1994), pp. 159–177

    Google Scholar 

  • C. Varga, I. Fekete, Z. Kotroc, Z. Krakomperger, G. Vincze, The effect of litter on soil organic matter (SOM) turnover in Sikfokut site. Cereal Res. Commun. 36, 547–550 (2008)

    CAS  Google Scholar 

  • V.E. Vysokogorskii, A.A. Nozdrunova, G.V. Plaksin, O.I. Krivonos, O.Z. Mkrtchan, L.Y. Petrosyan, Antioxidant capacity of liquid products of heat-treated sapropels. Pharm. Chem. J. 43(4), 191–194 (2009)

    CAS  Google Scholar 

  • U. Wolina, Peat: A natural source for dermatocosmetics and dermatotherapeutics. J. Cutan. Aesthetic. Surg. 2(1), 17–20 (2009)

    Google Scholar 

  • E. Yamada, T. Ozaki, M. Kimura, Determination and behavior of humic substances as precursors of trihalomethane in environmental water. Anal. Sci. 14, 327–332 (1998)

    CAS  Google Scholar 

  • Z.Y. Yuan, Y.H. Chen, Fine root biomass, production, turnover rates and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility and stand age: Literature review and meta-analysis. Crit. Rev. Plant Sci. 29(4), 204–221 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Ogbeide Ebhodaghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ebhodaghe, S.O. (2023). Biomolecules from Humus Oil. In: Thomas, S., AR, A., Jose Chirayil, C., Thomas, B. (eds) Handbook of Biopolymers . Springer, Singapore. https://doi.org/10.1007/978-981-19-0710-4_6

Download citation

Publish with us

Policies and ethics