Skip to main content

A Novel Pixelated Approach for Synthesis of Wideband Metamaterial Cross Polarizer Using Wind-Driven Optimization Algorithm

  • Conference paper
  • First Online:
Soft Computing: Theories and Applications

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 425))

  • 713 Accesses

Abstract

In this paper, synthesis of wideband metamaterial cross polarizer (MCP) is proposed. The synthesis of proposed MCP is done by using binary wind-driven optimization (BWDO) techniques which is an advance version of wind-driven optimization (WDO) techniques. The maximum number of iteration is done to achieve the desired wideband responses. The structure is iterated up to 50 iterations to achieve –10 dB bandwidth of 4.38 GHz ranging from 7.56 to 11.94 GHz with three polarization conversion ratio (PCR) peaks at 8.2, 10.5 and 11.8 GHz with PCR percentage of 99.89, 98.92 and 96.74\(\%\), respectively. The polarization conversion mechanism is explained under the analysis section with the help of effective electromagnetic (EM) parameters \(\epsilon _{\text {eff}}\) and \(\mu _{\text {eff}}\). At last, the proposed MCP is compared with the already reported MCP. The proposed MCP can find its application in the field of radar, antenna and communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2010) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84(18):4184

    Article  Google Scholar 

  2. Alù A, Engheta N (2008) Dispersion characteristics of metamaterial cloaking structures. Electromagnetics 28(7):464–75

    Article  Google Scholar 

  3. Zhao YJ, Zhou BC, Zhang ZK, Zhang R, Li BY (2007) A compact tunable metamaterial filter based on split-ring resonators. Optoelectron Lett 13(2):120–2

    Article  Google Scholar 

  4. Roy K, Sinha R, Barde C, Kumar S, Ranjan P, Jain A (2021) Omni-directional zeroth order resonator (ZOR) antenna for L-band applications. In: Machine vision and augmented intelligence–theory and applications. Springer, Singapore, pp 443–451

    Google Scholar 

  5. Ranjan P, Choubey A, Mahto SK (2018) A novel approach for optimal design of multilayer wideband microwave absorber using wind driven optimization technique. AEU-Int J Electron Commun 83:81–7

    Article  Google Scholar 

  6. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402

    Google Scholar 

  7. Guo XR, Zhang Z, Wang JH, Zhang JJ (2013) The design of a triple-band wide-angle metamaterial absorber based on regular pentagon close-ring. J Electromagn Waves Appl 27(5):629–637

    Google Scholar 

  8. Li M, Yang H-L, Hou X-W, Tian Y, Hou D-Y (2010) Perfect metamaterial absorber with dual bands. Progress Electromagn Res 108:37–49

    Article  Google Scholar 

  9. Prakash R, Arvind C, Mahto SK, Sinha R (2018) A six-band ultra-thin polarization-insensitive pixelated metamaterial absorber using a novel binary wind driven optimization algorithm. J Electromagn Waves Appl 32(18):2367–2385

    Google Scholar 

  10. Barde C, Choubey A, Sinha R, Mahto SK, Ranjan P (2020) A compact wideband metamaterial absorber for Ku band applications. J Mater Sci: Mater Electron 31(19):16898–16906

    Google Scholar 

  11. Ranjan P, Barde C, Choubey A, Sinha R, Jain A, Roy K (2021) A wideband metamaterial cross polarizer conversion for C and X band applications. Frequenz

    Google Scholar 

  12. Tak J, Jeong E, Choi J (2017) Metamaterial absorbers for 24-GHz automotive radar applications. J Electromagn Waves Appl 31(6):577–593

    Google Scholar 

  13. Bhattacharyya S, Ghosh S, Vaibhav Srivastava K (2013) Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band. J Appl Physi 114(9):094514

    Google Scholar 

  14. Barde C, Choubey A, Sinha R (2020) A set square design metamaterial absorber for X-band applications. J Electromagne Waves Appl 34(10):1430–1443

    Article  Google Scholar 

  15. Zheng D, Cheng Y, Cheng D, Nie Y, Gong RZ (2013) Four-band polarization-insensitive metamaterial absorber based on flower-shaped structures. Progress Electromagn Res 142:221–9

    Article  Google Scholar 

  16. Munaga P et al (2016) “A fractal” based compact broadband polarization insensitive metamaterial absorber using lumped resistors. Microwave Opt Technol Lett 58(2):343–347

    Google Scholar 

  17. Barde Chetan, Choubey Arvind, Sinha Rashmi (2019) Wide band metamaterial absorber for Ku and K band applications. J Appl Phys 126(17):175104

    Article  Google Scholar 

  18. Zhao Y et al (2011) The microstructure design optimization of negative index metamaterials using genetic algorithm. Progress Electromagn Res 22:95–108

    Google Scholar 

  19. Smith DR, Vier DC, Koschny T, Soukoulis CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71(3):036617

    Google Scholar 

  20. Saptarshi G et al (2014) Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. J Appl Phys 115(10):104503

    Google Scholar 

  21. Lee J, Lim S (2011) Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance. Electron Lett 47(1):8–9

    Article  Google Scholar 

  22. Saptarshi G, Bhattacharyya S, Srivastava KV (2014) “Bandwidth” enhancement of an ultrathin polarization insensitive metamaterial absorber. Microw Opt Technol Lett 56(2):350–355

    Google Scholar 

  23. Sood D, Tripathi CC (2015) A wideband wide-angle ultra-thin metamaterial microwave absorber. Progress Electromagn Res 44:39–46

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Ranjan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ranjan, P., Barde, C., Choubey, A., Mahto, S.K., Vazquez, H.P. (2022). A Novel Pixelated Approach for Synthesis of Wideband Metamaterial Cross Polarizer Using Wind-Driven Optimization Algorithm. In: Kumar, R., Ahn, C.W., Sharma, T.K., Verma, O.P., Agarwal, A. (eds) Soft Computing: Theories and Applications. Lecture Notes in Networks and Systems, vol 425. Springer, Singapore. https://doi.org/10.1007/978-981-19-0707-4_59

Download citation

Publish with us

Policies and ethics