Skip to main content

Residual in Residual Cascade Network for Single-Image Super Resolution

  • Conference paper
  • First Online:
Advances in Information Communication Technology and Computing

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 392))

  • 642 Accesses

Abstract

Digital images are of great significance in today’s scenario, where almost every single domain relies on them from agriculture to businesses to the military for their specific purposes. To convey the context, a more precise image gives more idealization and personalization to the aspect one wants to build. The precise images connote high clarity and distinct characteristics which is represented by a parameter known as resolution of image. This paper focuses on upscaling the resolution of image using a fast, lightweight artificial neural network (ANN)—RRCasN. The proposed model surpasses the traditional methods and competes with modern ANN-based architectures in terms of size of the model and quality of the high-resolution image produced. This paper also introduces a novel approach for normalization in place of batch normalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deep learning based super resolution, without using a GAN. https://towardsdatascience.com/deep-learning-based-super-resolution-without-using-a-gan-11c9bb5b6cd5. Last accessed 2021/08/02

  2. Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., Zhang, L.: Image super-resolution: the techniques, applications, and future. In: Leus, G. (eds.) Signal Processing, vol. 128, pp. 389–404. Elsevier (2016)

    Google Scholar 

  3. Coupé, P., Manjón, J.V., Chamberland, M., Descoteaux, M., Hiba, B.: Collaborative patch-based super-resolution for diffusion-weighted images. In: M. Breakspear (eds.) NeuroImage, vol. 83, pp. 245–261. Elsevier (2013)

    Google Scholar 

  4. Mac, A.O., Campbell, N.D.F., Nair, A., Brostow, G.J.: Patch based synthesis for single depth image super-resolution. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision—ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, vol. 7574. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  5. Xiong, Z., Xu, D., Sun, X., Wu, F.: Example-based super-resolution with soft information and decision. IEEE Trans. Multimedia 15(6), 1458–1465. (2013)

    Google Scholar 

  6. Xie, J., Feris, R.S., Sun, M.T.: Edge-guided single depth image super resolution. IEEE Trans. Image Process. 25(1), 428–438 (2016)

    Google Scholar 

  7. Tai, Y.W., Tong, W.S., Tang, C.K.: Perceptually-inspired and edge-directed color image super-resolution. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), pp. 1948–1955. IEEE (2006)

    Google Scholar 

  8. Dong, W., Fu, F., Shi, G., Cao, X., Wu, J., Li, G., Li, X.: Hyperspectral image super-resolution via non-negative structured sparse representation. IEEE Trans. Image Process. 25(5), 2337–2352 (2016)

    Google Scholar 

  9. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. Anchorage, AK, USA, IEEE (2008)

    Google Scholar 

  10. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981)

    Google Scholar 

  11. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP Graph. Models Image Process. 53(3), 231–239 (1991)

    Google Scholar 

  12. Robinson, M.D., Chiu, S.J., Toth, C.A., Izatt, J.A., Lo, J.Y., Farsiu, S.: New applications of super-resolution in medical imaging, 1st edn. In: Super-Resolution Imaging. CRC Press (2011)

    Google Scholar 

  13. Rasti, P., Uiboupin, T., Escalera, S., Anbarjafari, G.: Convolutional neural network super resolution for face recognition in surveillance monitoring. In: Perales F., Kittler J. (eds.) Articulated Motion and Deformable Objects. AMDO 2016. Lecture Notes in Computer Science, vol. 9756. Springer, Cham (2016)

    Google Scholar 

  14. Huo, X., Tang, R., Ma, L., Shao, K., Yang, Y.: A novel neural network for super-resolution remote sensing image reconstruction. Int. J. Remote Sens. 40, 2375–2385 (2019)

    Google Scholar 

  15. Wang, C., Zhang, Y., Zhang, Y., Tian, R., Ding M.: Mars image super-resolution based on generative adversarial network. IEEE Access 9, 108889–108898 (2021)

    Google Scholar 

  16. Nguyen, K., Fookes, C., Sridharan, S., Tistarelli, M.N.M.: Super-resolution for biometrics: a comprehensive survey. Pattern Recogn. 78, 23–42 (2018)

    Google Scholar 

  17. Ma, C., Jiang, Z., Rao, Y., Lu, J., Zhou, J.: Deep face super-resolution with iterative collaboration between attentive recovery and landmark estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5569–5578. IEEE (2020)

    Google Scholar 

  18. Li, C., Le, V., Wang, X., Hao, X., Liu, X., Kuang, C.: Resolution Enhancement and background suppression in optical super-resolution imaging for biological applications. Laser Photon. Rev. 15(1) (2020)

    Google Scholar 

  19. Li, J., Feng, J., Kuo, C.C.J.: Deep convolutional neural network for latent fingerprint enhancement. Signal Process. Image Commun. 60, 52–63 (2018)

    Google Scholar 

  20. Wang, X., Zhang, H., Liu, J., Xiao, L., He, Z., Liu, L., Duan, P.: Iris Image Super Resolution Based on GANs with Adversarial Triplets: Chinese Conference on Biometric Recognition. Lecture Notes in Computer Science, vol. 11818, pp. 346–353. Springer, Cham (2019)

    Google Scholar 

  21. Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J. H., Liao, Q.: Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimedia 21(12), 3106–3121 (2019)

    Google Scholar 

  22. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision—ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol. 8692. Springer, Cham (2014)

    Google Scholar 

  23. Kim, J., Lee, J. K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646–1654. IEEE (2016)

    Google Scholar 

  24. Tai, Y., Yang, J., Lui, X.: Image super-resolution via deep recursive residual network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3147–3155. IEEE (2017)

    Google Scholar 

  25. Choi, J.H., Kim, J.H., Cheon, M., Lee, J.S.: Lightweight and efficient image super-resolution with block state-based recursive network. arXiv:1811.12546v1 (2018)

  26. Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4539–4547. IEEE (2017)

    Google Scholar 

  27. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1664–1673. IEEE (2018)

    Google Scholar 

  28. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11065–11074. IEEE (2019)

    Google Scholar 

  29. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301. IEEE (2018)

    Google Scholar 

  30. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, vol. 2, pp. 2672–2680. MIT Press (2014)

    Google Scholar 

  31. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., Shi, W.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4681–4690. IEEE (2017)

    Google Scholar 

  32. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556v6 (2015)

  33. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2472–2481. IEEE (2018)

    Google Scholar 

  34. Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé L., Roth S. (eds.) Computer Vision—ECCV 2018 Workshops. ECCV 2018. Lecture Notes in Computer Science, vol. 11133. Springer, Cham (2018)

    Google Scholar 

  35. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 136–144. IEEE (2017)

    Google Scholar 

  36. Ahn, N., Kang, B., Sohn, K.A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds.) Computer Vision—ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol. 11214. Springer, Cham (2018)

    Google Scholar 

  37. Hui, Z., Wang, X., Gao, X.: Fast and accurate single image super-resolution via information distillation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 723–731. IEEE (2018)

    Google Scholar 

  38. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Fast and accurate image super-resolution with deep Laplacian pyramid networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(11), 2599–2613 (2019)

    Google Scholar 

  39. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034. IEEE (2015)

    Google Scholar 

  40. Shi, W., Caballero, J., Huzár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.: Real-Time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1874–1883. IEEE (2016)

    Google Scholar 

  41. Rectifiers (neural networks). Wikipedia, the free encyclopedia. https://en.m.wikipedia.org/wiki/Rectifier_(neural_networks). Last accessed 2021/08/02

  42. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence. North America, AAAI (2017)

    Google Scholar 

  43. He, K., Zhang, X., Ren, S., Jian, S.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE (2016)

    Google Scholar 

  44. Standard score. Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Standard_score. Last accessed 2021/08/02

  45. Mean squared error. Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Mean_squared_error. Last accessed 2021/08/02

  46. Dong, H.W., Yang, Y.H.: Towards a Deeper Understanding of Adversarial Losses Under a Discriminative Adversarial Network Setting. arXiv:1901.08753v2 (2020)

  47. Gatys, L.A., Ecker, A.S., Bethge, M.: A Neural Algorithm of Artistic Style. arXiv:1901.08753v2 (2015)

  48. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, PMLR, vol. 37, pp. 448–456. Proceedings of Machine Learning Research (2015)

    Google Scholar 

  49. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 126–135. IEEE (2017)

    Google Scholar 

  50. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on Nonnegative neighbor embedding. In: Proceedings of the 23rd British Machine Vision Conference (BMVC), pp. 135.1–135.10. ISBN 1-901725-46-4. BMVA Press (2012)

    Google Scholar 

  51. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.D. et al. (eds.) Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol. 6920. Springer, Berlin, Heidelberg

    Google Scholar 

  52. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, pp. 416–423. IEEE (2001)

    Google Scholar 

  53. Huang, J.B., Singh, A., Ahuja, N.: Single image super resolution from transformed self-exemplars. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5197–5206. IEEE (2015)

    Google Scholar 

  54. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612. IEEE (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apoorvi Sood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aggarwal, A., Bansal, M., Verma, T., Sood, A. (2022). Residual in Residual Cascade Network for Single-Image Super Resolution. In: Goar, V., Kuri, M., Kumar, R., Senjyu, T. (eds) Advances in Information Communication Technology and Computing. Lecture Notes in Networks and Systems, vol 392. Springer, Singapore. https://doi.org/10.1007/978-981-19-0619-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0619-0_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0618-3

  • Online ISBN: 978-981-19-0619-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics