Skip to main content

The Comprehensive Art of Atmospheric Turbulence Mitigation Methodologies for Visible and Infrared Sequences

  • Conference paper
  • First Online:
Advances in Information Communication Technology and Computing

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 392))

  • 613 Accesses

Abstract

Heat scintillation also known as atmospheric turbulence distorts the image. This distortion is due to the propagation of light that passed through the volatile surroundings. The distortion created by the atmospheric turbulence is proportional to the distance between camera and object. This paper gives an overview of state-of-the-art techniques, working principles, and challenges in the field of the atmospheric turbulence. The techniques include first register then average and subtract (FRTAAS), independent component analysis (ICA), Lucas–Kanade, and control grid interpolation (CGI). These techniques use image registration for mitigation atmospheric turbulence. Different standard datasets mostly used in this field are represented in the paper. Finally, all state-of-the-art algorithms are evaluated based on standard evaluation performance parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He, R., Wang, Z., Fan, Y., Fengg, D.: Atmospheric turbulence mitigation based on turbulence extraction. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) Shanghai, China. pp. 1442–1446 (2016)

    Google Scholar 

  2. Frakes, D.H., Dasi, L.P., Pekkan, K., Kitajima, H.D., Sundareswaran, K., Yoganathan, A.P., Smith, M.J.: A new method for registration-based medical image interpolation. IEEE Trans. Med. Imaging 27(3), 370–377 (2008)

    Article  Google Scholar 

  3. Patel, J.M., Israni, D., Bhatt, C.: An adaptive approach to eliminate atmospheric scintillation in long range visible sequence. Int. J. Inf. Technol. Secur. 12(1), 51–61 (2020)

    Google Scholar 

  4. Li, D., Simske, S.: Atmospheric turbulence degraded-image restoration by kurtosis minimization. IEEE Geosci. Remote Sens. Lett. 6(2), 244–247 (2009)

    Article  Google Scholar 

  5. Chao, Z., Zhou, F., Xue, B., Xue, W.: Stabilization of atmospheric turbulence-distorted video containing moving objects using the monogenic signal. Sig. Process. Image Commun. 63(3), 19–29 (2018)

    Google Scholar 

  6. Nunes, P., Israni, D., Karthick, D., Shah, A.: A novel approach for mitigating atmospheric turbulence using weighted average Sobolev gradient and Laplacian. Int. J. Comput. Vis. Rob. 9(5), 515–526 (2019)

    Google Scholar 

  7. Bousefsaf, F., Maaoui, C., Pruski, A.: Remote sensing of vital signs and biomedical parameters: a review. Modell. Meas. Control C 79, 173–178 (2018)

    Article  Google Scholar 

  8. Yuan, Y., Liu, X., Qu, J., Yao, M., Gao, Y., Cai, Y.: Second-order statistical properties of a j0-correlated schell-model beam in a turbulent atmosphere. J. Quant. Spectrosc. Radiat. Transf. 224, 185–191 (2018)

    Article  Google Scholar 

  9. Halder, K.K., Tahtali, M., Anavatti, S.G.: A new image restoration approach for imaging through the atmosphere. In: IEEE International Symposium on Signal Processing and Information Technology, pp. 350–355. Greece, Athens (2013)

    Chapter  Google Scholar 

  10. Kopriva, I., Du, Q., Szu, H.H.: Image sharpening using image sequence and independent component analysis. In: Independent Component Analyses, Wavelets, Unsupervised Smart Sensors, and Neural Networks II, vol. 5439, pp. 63-73 (2004)

    Google Scholar 

  11. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Conference on artificial intelligence (IJCAI), pp. 674–679. Vancouver, British Columbia (1981)

    Google Scholar 

  12. Sullivan, G.J., Baker, R.L.: Motion compensation for video compression using control grid interpolation. In: International Conference Acoustics, Speech, and Signal Processing (ICASSP), pp. 2713–2716. Toronto, Canada (1991)

    Google Scholar 

  13. Yee, S.L., Mokri, S.S., Hussain, A., Ibrahim., N, Mustafa, M.M.: Motion detection using Lucas Kanade algorithm and application enhancement. In: International Conference on Electrical Engineering and Informatics (ICEEI), pp. 537–542. Selangor, Malaysia (2009)

    Google Scholar 

  14. Abdoola, R.: Algorithms for the removal of heat scintillation in images. Ph.D. dissertation. Tshwane University of Technology South African, pp. 1–199 (2008)

    Google Scholar 

  15. Liao, X., Carin, L.: A new algorithm for independent component analysis with or without constraints. In: Sensor Array and Multichannel Signal Processing Workshop Proceedings, pp. 413–417. Rosslyn, VA, USA (2002)

    Google Scholar 

  16. Donald, F., Thorpe, G., Lambert, A.: Atmospheric turbulence visualization with wide-area motion-blur restoration. J. Opt. Soc. Am. 16(7), 1751–1758 (1999)

    Article  Google Scholar 

  17. Frakes, D.H., Monaco, J.W., Smith, M.J.: Suppression of atmospheric turbulence in video using an adaptive control grid interpolation approach. In: International Conference on Acoustics, Speech, and Signal Processing (2001)

    Google Scholar 

  18. Dalong, L.: Suppressing atmospheric turbulent motion in video through trajectory smoothing. Signal Process. 89(4), 649–655 (2009)

    Article  Google Scholar 

  19. Kheni, D., Italiya, T., Isarani, D., Karthick, D.: A novel blind approach for image restoration using adaptive kurtosis based deconvolution. In: 2nd IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), pp. 957–962. Bangalore, India (2017)

    Google Scholar 

  20. Chokshi, R., Israni, D., Chavda, N.: An efficient deconvolution technique by identification and estimation of blur. In: International Conference Recent Trends in Electronics, Information Communication Technology (RTEICT), pp. 17–23. Bangalore, India (2016)

    Google Scholar 

  21. Jrme, G., Ferrante, N.B.: Open turbulent image set (OTIS). Pattern Recogn. Lett. 86, 38–41 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janki M. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patel, J.M., Israni, D., Bhatt, C. (2022). The Comprehensive Art of Atmospheric Turbulence Mitigation Methodologies for Visible and Infrared Sequences. In: Goar, V., Kuri, M., Kumar, R., Senjyu, T. (eds) Advances in Information Communication Technology and Computing. Lecture Notes in Networks and Systems, vol 392. Springer, Singapore. https://doi.org/10.1007/978-981-19-0619-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0619-0_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0618-3

  • Online ISBN: 978-981-19-0619-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics